

KNOWLEDGE MANAGEMENT IN MULTI-AGENT
SYSTEMS

Dejan Lavbič, Ana Šaša, Marjan Krisper

Information Systems Laboratory
Faculty of Computer and Information Science

University of Ljubljana
Tržaška 25, 1000 Ljubljana, Slovenia

Tel: +386 1 47 68 367; fax: +386 1 47 68 704
e-mail: {Dejan.Lavbic, Ana.Sasa, Marjan.Krisper}@fri.uni-lj.si.si

ABSTRACT

As knowledge management has become an emerging
paradigm its application in various domains is being
researched. Ontologies as a means of knowledge
representation are gaining their importance, even though its
practical use is still somewhat limited. We believe that
agent-oriented systems, due to their cognitive
characteristics, provide a promising approach for
knowledge management. On the other hand ontologies and
ontology reasoners seem to be a suitable mechanism which
would enable agents to efficiently use their knowledge.
This could mean a big step forward in the agent-oriented
world i.e. possibly a standardized approach to agents’
mentalistic notions, which would be particularly useful in
agent communication and knowledge sharing. In this paper
we present a possible solution to use of ontologies in Multi-
Agent System and explain how it was applied in our case
study.

1 INTRODUCTION

There is a growing recognition in the business community
about the importance of knowledge as a critical resource for
organisations. Knowledge management can be defined as a
method to simplify and improve the process of sharing,
distributing, creating, capturing and understanding
knowledge in an organisation. The purpose of knowledge
management is to help organisations create, share and use
knowledge more effectively, because that causes fewer
errors, better decisions, less reinventing of wheels etc.
Ontologies were developed in artificial intelligence to
facilitate knowledge sharing and re-use. The reason
ontologies are becoming popular is largely due to what they
promise: “a shared and common understanding of domain
that can be communicated between people and application
systems”. As such, the use of ontologies and supporting
tools offers and opportunity to significantly improve
knowledge management capabilities in large organisations.
The purpose of this article is to present knowledge
management within Multi-Agent System (MAS) that we
developed for facilitating decision support in modern

organisations. Case study is from the domain of mobile
communications and is ontology based. The primary goal
is to provide the knowledge worker an intelligent analysis
platform that enhances management process. Thus
mechanism for efficient knowledge exchange and
management is required to facilitate cooperation between
agents in MAS.
The remainder of this paper is organised in the following
sections. In section 2 we provide agents and Multi-Agent
Systems background. In section 3 we present ontologies
and their roles in knowledge management. Then in section
4 we discuss how knowledge management can be
addressed within Multi-Agent Systems and present our
approach in using ontologies for knowledge sharing
purposes. Finally, in section 5, we provide our summary,
conclusions and guidelines for future work.

2 AGENTS AND MULTI-AGENT SYSTEMS

Multi-Agent Systems (MAS) are gradually becoming a
new paradigm for developing distributed computing
systems. This paradigm provides an appropriate
architecture for design and implementation of integrative
business information systems. Agent-based technology
supports complex information systems development by
providing natural decomposition, abstraction, and
flexibility of management for organizational structure
changes [Kishore, 2003; Luck, 2005]. In general, benefits
of an agent-based information system include
simplification of complex distributed computing, time
savings, more and better information, better decisions,
improved business processes etc.
The research on intelligent agents and multi-agent systems
has been on the rise over the last two decades. The stream
of research on business information systems and enterprise
integration [Kang, 2003; Tewari, 2003; Yuan, 2003]
makes the MAS paradigm a very appropriate platform for
integrative decision support within business information
systems and knowledge management. Similarities between
the agent in the MAS paradigm and the human actor in
business organisations in terms of their characteristics and
coordination lead us to a conceptualisation where

intelligent agents in MAS are used to represent actors in
human organizations.
While there is no universally agreed definition of an agent,
the following is most widely accepted: “an agent is a
computer system that is situated in some environment, and
that is capable of autonomous actions in this environment
in order to meet its design objectives” [Wooldridge, 2000].
Furthermore, it has been proposed that an intelligent agent
is autonomous, reactive, proactive, and social [Bernon,
2005]. This characterization has also been adopted by
AgentLink society that consists of European research
groups and partners from industry in the field of agents and
multi-agent systems. An agent is different from a traditional
object. First of all, agents are commonly modelled using
“mentalistic” notions, such as knowledge, belief, intention,
obligation, while objects are modelled as simply
encapsulating their internal structure as methods and
attributes. The degree to which agents and objects are
autonomous is quite different. An object does not have
control over its behaviours, because it is invoked by others.
On the contrary, an agent is able to decide whether or not to
execute an action after receiving request.
Whereas the popularity and applications of the agent
technology in the business domain has grown over the
recent years, the field currently deals with innovative
approaches and architectures for solving business and
information systems integration problem. There is a lack of
unifying framework that would be used for business
information systems (ERP, workflow, etc.), the MAS
paradigm integration and also provide a foundation for
conceptual analysis and modelling of integrative business
information systems based on the MAS paradigm. There
has been some research progress as mentioned in [Kishore,
2003], but mainly using Object-Oriented techniques and
not MAS approach. In this article we propose ontology
based solution towards integration of business systems with
emphasis on knowledge management.

3 ROLE OF ONTOLOGIES IN KNOWLEDGE
MANAGEMENT

Ontologies are increasingly gaining their importance in
interoperable systems to capture meanings and relationships
of concepts used in various domains. They are used to
capture knowledge about some domain of interest, describe
the concepts of the domain and also the relationships that
hold between those concepts. [Gruber, 1995] defines the
ontology as an explicit specification of a conceptualisation
of the real-world entities of an application domain.
Therefore ontologies are very useful whenever two or more
actors have to work together. They play a very important
role in our MAS due to collaborative nature of the system,
agent-to-agent communication, knowledge management
and interoperability reasons that exist between different
database systems.
Knowledge representation is very important for information
systems in knowledge aware organisations but it is not

sufficient by itself. Knowledge has to be understood and
furthermore users must know how to use that stored
knowledge. To benefit from existing knowledge and to
derive new knowledge, inference support is required,
where rules play an important role. They are used for
defining relationships among concepts of ontology and
therefore semantically extend captured data. As depicted in
figure 1 ontology construction is a step that can be placed
just after the conceptualization of problem domain and
before formalization.

Figure 1: Application lifecycle with high level of
knowledge usage

While there is no formal methodology for ontology
construction, [Noy, 2000] suggests the following steps in
ontology development: determine the domain and scope of
the ontology, consider reusing existing ontologies,
enumerate important terms in the ontology, define the
classes and the class hierarchy, define the properties of
classes, define restrictions, create instances, check for
inconsistencies.
There are several languages available for ontology
representation and different ontology languages provide
different facilities. The most recent development in
standard ontology languages is OWL, developed by the
World Wide Web Consortium (W3C) [W3C, 2004]. OWL
makes it possible to describe concepts but it also provides
new facilities. It has a richer set of operators (e.g. and, or
and negation) and it is based on a different logical model
which makes it possible for concepts to be defined as well
as described. Complex concepts can therefore be built up
in definitions out of simpler concepts. Furthermore, the
logical model allows the use of a reasoner which can check
whether or not all of the statements and definitions in the
ontology are mutually consistent and can also recognise
which concepts fit under which definitions. The reasoner
can therefore help to maintain the hierarchy correctly. This
is particularly useful when dealing with cases where
classes can have more than one parent.
OWL ontology consists of Individuals, Properties and
Classes. Individuals represent objects in the domain that
we are interested in. Individuals are also known as
instances and can be referred to as being instances of
classes. Properties are binary relations on individuals – i.e.
properties link two individuals together. They are also
known as roles in description logics and relations in UML
and other object oriented notions. In some other
formalisms they are called attributes. OWL classes are
interpreted as sets that contain individuals. They are
described using formal descriptions that state precisely the
requirements for membership of the class. Classes may be

organised into a superclass-subclass hierarchy, which is
also known as taxonomy. The word concept is sometimes
used in place of class, where classes are actually a concrete
representation of concepts. We chose OWL for our case
study implementation due to high level of semantic
expressiveness and wide acceptance of the language in the
Semantic Web community.

4 KNOWLEDGE MANAGEMENT IN MULTI-
AGENT SYSTEMS

Every agent has to deal with its specific problems and
therefore uses the ontology that corresponds to its problem
domain. However some intersections of their ontology
domains exist which allow agents to cooperate and thus
satisfy their common goal. Several issues arise at this point.
The first thing to consider is finding the best way to
organize the ontology among agents of our MAS to enable
an efficient way for them to communicate using the
ontologies and of course to maximize performance. The
second step is defining the way agents manage the
ontologies and reason based on them.

4.1 Organizing ontologies among agents

There are at least four possible solutions to this issue and
they will be discussed further in this section.
Every agent has knowledge about its problem domain
and directly communicates with another agent whenever
it needs information about certain subject other agents
might have – the intersecting parts of the ontology they use
are passed only by the direct communication between
agents. The advantage of this approach is that every agent
can decide for itself whether it should trust another agent
and request information from the agent it finds the most
credible. The major drawback is that in MAS, where a lot of
communication is needed among agents, additional message
passing can cause reduced performance of the overall
system. There are two possible ways of passing the new
information to other agent. The first is that an agent simply
sends the new piece of information to all agents that might
be interested. This is the way that the subscribe protocol
works [FIPA, 2001], but it is not always the best option,
especially in the case of messages that contain large
ontologies. If we presume that the number of all agents
interested in (subscribed to) certain subject is , that the
size of a message which contains an ontology is and that
the size of an inform message is

N
K

I , where KI << , the
size of all the messages passed in this case would be

. KN ⋅
The other option is that an agent only sends an inform
message to all the agents which might be interested (or
subscribed) that some new information on certain subject
exists. Other agents can request the new information when
they need to update their knowledge. In this way we avoid
sending unnecessary messages to agents which won't
actually need it. If 'N the number of agents which update

their information, the maximum number of messages
passed would be:

 is

• When a certain agent finds an information that
might be of interest to other agents it notifies these
agents about the change: . IN ⋅

• Each agent which at certain moment needs this
information would then ask about the change:

. IN ⋅'
• The first agent would then send the answer to any

agent that requested it: . KN ⋅'
The size of all messages would thus be:

, where . Compared
to the previous case:

KNININ ⋅+⋅+⋅ '' NN ≤≤ '0
KNINKNIN ⋅+⋅⋅<⋅<⋅ 2 ,

which means that this choice is more appropriate when
most of the possible agents will not need the information
each time it changes.
Every agent has knowledge about its problem domain,
but whenever something new arises about the common
knowledge which might be of interest for other agents,
it updates the common ontology, which is accessible to
all other agents in the system; the common ontology thus
comprises an intersection of all of the agents' ontologies.
This is a possible solution to avoid unnecessary message
passing. Similarly to the previous case, when an agent finds
some information that might be of interest to other agents it
simply notifies other agents about the change and writes the
change to the common ontology. All the agents that are
concerned about this piece of information can thereafter
acquire it in the common ontology. The maximum number
of messages passed, when some new piece of information
is found, is IN ⋅ , which is better, compared to previous
options. Thus agents practically do not need to
communicate directly to share knowledge, but only to
coordinate and other behavioural issues. There is however
one limitation when compared to the previous possibilities.
For an agent there is no way of telling whether he can
really believe the new information, i.e. in the case its
beliefs or knowledge are contradictory to the information in
the common ontology. This is not appropriate in the MAS
where there are more agents reasoning about the same
issue. In that case some other mechanism of coordination is
needed.
Every agent has knowledge about its problem domain,
but whenever something new arises it writes it in the
common ontology; the common ontology thus comprises
a union of all of the agents' ontologies. The number and
size of messages passed is the same as in the previous case,
but the main improvement is that in the case that an agent
experiences a failure it can immediately restore its
knowledge when restarted. In our case study we are dealing
with MAS where every agent reasons about its specific
problem domain. Therefore we have chosen the last
approach, which is described more in detail in the next
section.

4.2 Ontology organization in our case study

Multi-Agent System presented in our case study is from the
domain of mobile communications. To depict knowledge
management in the environment of various agents our MAS
uses heterogeneous systems such as Data Mining Decision
Support System [Rupnik, 2005], Data Warehouse and
different resource on the Internet.
The global goal that agents in our MAS strive to is
supporting decision making process while using several
existing systems for business analysis that already exist in
organisation and employing information from the
environment where organisations resides. A very important
element of the environment is the World Wide Web, where
agents play information retrieval role for the purpose of
decision making. When all the roles that agents play were
defined, a problem of coordination among agents arose. The
situation is depicted in figure 2 with all agents responsible
for distinct part of the system.

Figure 2: Knowledge management and sharing between

agents in our MAS

In the view of an individual agent, coordination is not an
issue that designer should be concerned about, but that
becomes very important in the view of an agent as a part of
the whole system [Wooldridge, 2000; Jian, 2005; Jiao,
2006; Soo, 2006]. Important questions like how to ask
another agent for help, delegate work to and what is the
content of the message requesting some sort of action from
an agent that resides in MAS.
Even though the Semantic Web paradigm was created to
represent document content, it makes sense to apply this
concept to other areas where a common language and
carefully designed definitions are necessary in form of
common ontologies. In our approach we composed 3
domain ontologies that are based on organisational
structuring and are as follows: notifying ontology,
information retrieval ontology and data mining and
warehousing ontology (see figure 3). In data warehouse

area, definitions for figures, dimensions, cubes, reports and
their attributes (e.g. data field of the legacy system) are
captured in ontology. OLAP agent then, in the name of
business user, analyses cubes and in case of major changes
drills down to trace reason for deviation.

Figure 3: Developing common ontology from multiple
domain-specific ontologies

Information retrieval ontology mainly deals with World
Wide Web concepts and retrieval of information located on
web sites. It is concerned with structured and semi
structured sources of information and rules for extracting,
cleaning and storing information into knowledge base.
The purpose of notifying ontology is to develop
architecture for relevant information alocation,
transformation and also generating alerts for business users.
Elements of context are also presented for defining users
needs and requests so that the right information can reach
the right user at the right time.
The elements of common ontology, derived from domain
ontologies were efficiently used in agent-to-agent
communication. This modular approach results in very little
effort in adding new agents to MAS and straightforward
way of extending capabilities. Using ontologies for
knowledge modelling gives an organisation opportunity to
separate domain knowledge from single software
applications. In doing this, independence is achieved, so
that the data can be used as the knowledge basis in other
applications within or outside MAS.
This approach is novel in a sense that there is a common
ontology for the purpose of interconnection among various
agents, where every agent still has its own distinct
knowledge model. Thus inference is a concern of every
agent that is responsible for its problem domain and when
all the common facts (predefined or derived) are assembled,
the inference on the highest level is conducted with
Knowledge Discovery Agent.

4.3 Managing ontologies

Currently the most suitable choice for development of
Multi-Agent Systems is JADE due to its popularity and
support. JADE is a software framework fully implemented
in Java language. It simplifies the implementation of Multi-
Agent Systems through a middle-ware compliant with the

FIPA specifications and through a set of tools that supports
the debugging and deployment phases [TILAB, 2000].
Therefore the next step to consider is how agents, written in
Java, will use the OWL ontologies. During the past years
there has already been research work devoted to
management of OWL ontologies using the Java language.
Two main approaches can be distinguished, both with a
number of support tools:

• Generating Java code from an ontology.
Examples of this concept are Protégé Bean
Generator plug-in [Aart, 2002] and OWLBeans
toolkit [Tomaiuolo, 2004]. They both provide fairly
similar functionality, which is quite reduced
compared to OWL. Bean Generator is implemented
as a Protégé plug-in, whereas OWLBeans is a
separate toolkit, that supports some additional
functionalities such as reading OWL ontology and
converting it to Java language for example.

• Direct access to OWL ontology. Examples are
Protégé-OWL API [Stanford, 2004] and the OWL
API of the JENA framework [HP, 2000]. They
provide classes and methods not only to load or save
OWL files, to query and manipulate OWL data
models, but also to perform reasoning.

Mapping OWL ontology to Java has several advantages
[Kalyanpur, 2004]:

• The Java API generated from ontology (schema)
can be used to readily build applications (or agents)
whose functionality is consistent with the design-
stage specifications defined in the schema.

• The use of any Java IDE to debug (or customize) the
application or ontology easily.

• The use of JavaDoc to generate an online
documentation of the ontology automatically.

As three main concepts in OWL are classes, individuals and
properties, at first glance OWL may not seem to be all that
different from the object-oriented data model. In OWL,
individuals are instances of classes as are in object-oriented
data model objects instances of classes. Properties describe
classes in more detail as do attributes which provide data
belonging to a class. However the mapping of OWL
ontology to an object-oriented representation is not
straightforward. There are numerous problems which need
to be taken into account due to the differences between the
object-oriented representation and OWL ontologies. Here
we will state only a few of them, a more exhaustive list with
detailed descriptions can be found in [Tomaiuolo, 2004].
An object in Java is an instance of only one class. In OWL
an individual can be an instance of multiple classes.
Moreover in OWL, classes are assumed to overlap if not
explicitly stated that they are disjoint. Furthermore they can
be mutually disjoint or the contrary, they can be complete
(their union completely covers another, more general, class).
The first requirement can be achieved fairly simply, for
example with an object of a class with several ancestors,
whereas disjointness and completeness are very difficult to
express.

In object-oriented data model there is no explicit notion for
an OWL property. An OWL property can be an Object
property, which indicates a relationship between
individuals, or a Datatype property, which links an
individual to an XML Schema Datatype value or an RDF
literal. This can be achieved to a certain extent with
attributes and variables, but in search of an appropriate
mapping we should also consider support for other property
characteristics, such as hierarchies, symmetry, transitivity,
equivalence and inversion.
Thus if we decide for the option of generating Java code
from an OWL ontology a compromise between losing some
information in translation and increased complexity of
implementation has to be considered. This is not
appropriate if all the system relies only on this compromise,
whereas it is sufficient and also the most reasonable option
in certain parts of the system:

• Agents’ reasoning: An agent should have a
support for reasoning which is not too complex but
is still complex enough for an agent to achieve its
goals.

• Communication between agents: Even if it does
not support all the functionality of the OWL
ontology, it is sufficient for the purpose of
communication between agents. As explained
earlier agents exchange only the basic information.
For example, instead of sending complex messages
an agent only sends a notification with a
description of the new information, whereas the
complete information can be found in the common
ontology if needed.

On the other hand each agent works only with its own
ontology, which means that even if the generated Java code
would enable full OWL functionality, reasoning on the
overall ontology might not be achieved – certain inferences
might be left out, because the union of the inferences made
by all agents does not necessarily cover the inferences that
could have been made, based on all the knowledge base.
Therefore some other mechanism for reasoning on the
overall ontology is needed to accomplish this missing part
and also to provide reasoning based on full OWL
functionality. Considering the possibilities and existing
tools, an API with a programmatic interface for directly
accessing the ontology and communication with a reasoner
is the most appropriate choice. Thus a complete support of
OWL ontologies is ensured for the common ontology,
which meets both requirements.
For construction of our ontology we used Protégé
[Stanford, 2004], since it is currently one of the most
powerful and widespread tools for this purpose. For OWL
to Java mapping we use Bean Generator, which is a
reasonable choice to use with the Protégé. It provides the
basic transformation of OWL to Java with the expected
reduced functionality. To access the common ontology we
use the OWL API of the JENA framework. JENA is chosen
mainly due to integrated rule and inference engine that can
be directly used in manipulation of ontology.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a practical solution to an
efficient use of OWL ontologies in multi-agent systems. We
have pointed out several possibilities for distributing
ontology of the overall system among its agents and their
main advantages and drawbacks, which indicate the kind of
a system where each one of them should be used.
Furthermore we have proposed an implementation of such a
system based on some existing tools.
Our current work is focused on testing the presented
approach and trying to find possible improvements,
especially in augmenting the functionality of translated
OWL ontologies to the Java language and to adapt the
agents’ reasoner efficiently to it. Our aim is that this solution
would work as a JADE add-on, which would facilitate and
possibly expand its use.

References

1. [Kishore, 2003] Kishore, R., Zhang, H., Ramesh, R.:
Enterprise integration using the agent paradigm:
foundations of multi-agent-based integrative business
information systems, Decision Support Systems,
Elsevier (2003)

2. [Kang, 2003] Kang. N., Han. S.: Agent based e-
marketplace system for more fair and efficient
transaction, Decision Support Systems, Vol. 34, Elsevier
(2003), 157–165

3. [Tewari, 2003] Tewari, G., Youll, J., Maes, P.:
Personalized location-based brokering using an agent-
based intermediary architecture, Decision Support
Systems, Vol. 34, Elsevier (2003), 127–137

4. [Yuan, 2003] Yuan, S.T.: A personalized and
integrative comparison – shopping engine and its
applications, Decision Support Systems, Vol. 34,
Elsevier (2003), 139–156

5. [Wooldridge, 2000] Wooldridge, M.: An Introduction
to Multi-Agent Systems, Wiley Publishing, Chichester,
England (2000)

6. [Gruber, 1995] Gruber, T.: Towards principles for
design of ontologies used for knowledge sharning,
International Journal of Human-Computer Studies, Vol.
43, Elsevier (1995), 907–928

7. [Noy, 2000] Noy, N. F., McGuinness, D. L.: Ontology
Development 101: A Guide to Creating Your First
Ontology, Stanford,
http://protege.stanford.edu/publications/ontology_devel
opment/ontology101-noy-mcguinness.html, 2000

8. [W3C, 2004] W3C: OWL Web Ontology Language
Overview, http://www.w3.org/TR/owl-features, 2004

9. [Lavbič, 2004] Lavbič, D.: Uporaba inteligentnih
agentov, Diploma thesis, University of Ljubljana,
Faculty of Computer and Information Science, 2004.

10. [Rupnik, 2005] Rupnik, R., Krisper, M.: Aplikativni
sistemi odkrivanja zakonitosti v podatkih kot nov tip
sistemov za podporo odločanju v informacijskih

sistemih, Uporabna informatika, Volume 13, Issue 2,
April/May/June 2005, pp. 61–73

11. [TILAB, 2000] Telecom Italia Lab: Java Agent
DEvelopment Framework, http://jade.tilab.com

12. [FIPA, 2001] FIPA: Foundation for Intelligent
Physical Agents: Subscribe Protocol Interaction
Specification,
http://www.fipa.org/specs/fipa00035/DC00035E.pdf

13. [Aart, 2002] Chris van Aart: BeanGenerator plug-in
for Protégé, http://acklin.nl/page.php?id=34

14. [Šaša, 2005] Šaša, A.: Modeliranje večagenetnih
sistemov, Diploma thesis, University of Ljubljana,
Faculty of Computer and Information Science, 2005.

15. [Kalyanpur, 2004] A. Kalyanpur, D. Pastor, S. Battle,
J. Padget: Automatic mapping of owl ontologies into
java. In proceedings of Software Engineering and
Knowledge Engineering Conference, SEKE 2004,
Banff, Canada

16. [HP, 2000] Hewlett-Packard Development Company,
Jena – A Semantic Web Framework for Java,
http://jena.sourceforge.net

17. [Stanford, 2004] Stanford University of School of
Medicin, Stanford Medical Informatics, Protege-OWL,
http://protege.stanford.edu/overview/protege-owl.html

18. [Tomaiuolo, 2004] Tomaiuolo, M., Turci, P., Bergenti,
F., Poggi, A.: An Ontology Support for Semantic
Aware Agents, 7th International Workshop on Agent-
Oriented Information Systems (AOIS), Fourth
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2004.

19. [Bernon, 2005] Bernon, C., Cossentino, M., Pavón, J.:
An Overview of Current Trends in European AOSE
Research, Informatica, Vol. 29, The Slovenian Society
Informatika (2005)

20. [Bordini, 2006] Bordini, R. H., Braubach, L., Dastani,
M., Seghrouchni, A. E. F., Gomez-Sanz, J. J., Leite, J.,
O’Hare, G., Pokahr, A., Ricci, A.: A Survey of
Programming Languages and Platforms for Multi-
Agent Systems, Informatica, Vol. 30, The Slovenian
Society Informatika (2006)

21. [Luck, 2005] Luck, M., McBurney, P., Shehory, O.,
Willmott, S.: Agent Technology: Computing as
Interaction, A Roadmap for Agent Based Computing,
http://www.agentlink.org, AgentLink III (2005)

22. [Jiao, 2006] Jiao, J., You, X., Kumar, A.: An agent-
based framework for collaborative negotiation in the
global manufacturing supply chain network, Robotics
and Computer-Integrated Manufacturing, Vol. 22,
Elsevier (2006), 239–255

23. [Soo, 2006] Soo, V. W., Lin, S. Y., Yang, S. Y., Lin,
S. N., Cheng, S. L.: A cooperative multi-agent
platform for invention based on patent document
analysis and ontology, Expert Systems with
Applications, Article in Press, Elsevier (2006)

24. [Jian, 2005] Jiang, Y. C., Jiang, J. C.: A multi-agent
coordination model for the variation of underlying

network topology, Expert Systems with Applications,
Vol. 29, Elsevier (2005), 372–382

	Dejan Lavbič, Ana Šaša, Marjan Krisper
	References

