
Facilitating information system development with
Panoramic view on data

Dejan Lavbič, Iztok Lajovic, and Marjan Krisper

Dejan Lavbič, Iztok Lajovic, and Marjan Krisper. 2010. Facilitating information system
development with Panoramic view on data, Computer Science and Information Systems
(ComSIS), 4(7), pp. 737 - 767.

Abstract

The increasing amount of information and the absence of an effective tool for assisting users with minimal
technical knowledge lead us to use associative thinking paradigm for implementation of a software solution
– Panorama. In this study, we present object recognition process, based on context + focus information
visualization techniques, as a foundation for realization of Panorama. We show that user can easily define
data vocabulary of selected domain that is furthermore used as the application framework. The purpose of
Panorama approach is to facilitate software development of certain problem domains by shortening the Soft-
ware Development Life Cycle with minimizing the impact of implementation, review and maintenance phase.
Our approach is focused on using and updating data vocabulary by users without extensive programming
skills. Panorama therefore facilitates traversing through data by following associations where user does not
need to be familiar with the query language, the data structure and does not need to know the problem
domain fully. Our approach has been verified by detailed comparison to existing approaches and in an exper-
iment by implementing selected use cases. The results confirmed that Panorama fits problem domains with
emphasis on data oriented rather than ones with process oriented aspects. In such cases the development of
selected problem domains is shortened up to 25%, where emphasis is mainly on analysis, logical design and
testing, while omitting physical design and programming, which is performed automatically by Panorama
tool.

Keywords

Software development, associative thinking, object recognition, rapid application development

1 Introduction

There is a vast amount of data available on a daily basis from various sources that we have to perceive,
analyse and comprehend. Several approaches to organising data on computers exist, starting from straight-
forward support for simple data structures that majority of operating systems offer, to sophisticated database
management systems for storage of composed and complex data structures (Harbron, 1988; Tharp, 1988).
Every approach deals with management of data in its own distinct way, where user is able to enter and edit
the data as well as prepare and view reports. The key question is how a user without extensive IT knowledge
can successfully cope with the complexity of all perceived data.
The development of Computer Science was always focused on aiding human actors at performing tasks
(Caramia and Felici, 2006; Tell, 1992; Ortner, 1991; Lavbič et al., 2010). In this paper, Panorama as an
implementation of our approach to support human actors in information management and software devel-
opment will be discussed. Panorama is based on principles of associative thinking and it supports inclusion
of various data structures that compound our information space and facilitates traversing through data by
following associations. This concept is based on the human observation of the environment and its context
– the complete information about selected object is available at certain time with a possibility of further

1

https://doi.org/10.2298/CSIS091122031L
https://doi.org/10.2298/CSIS091122031L
http://www.comsis.org/
http://www.comsis.org/


exploration of related concepts through associations. The present paper presents Panorama approach with
object recognition process, based on context + focus information visualization techniques (Ware, 2004), that
starts with observation and perception of the environment and continues with context of observed object.
This paper also addresses how software development is facilitated with Panorama tool. There a user can
develop, use and maintain an information system that would suit his/her needs for information manage-
ment without an extensive technical knowledge. The advantage of Panorama is in its efficient coding of
information with the principle of searching for information introduced in our solution being very similar to
human information processing within memory system. Panorama’s main goal is to facilitate the process of
transferring concepts from long-term memory to short-term memory by associations (Ware, 2004; Atkinson
and Shiffrin, 1968; Waugh and Norman, 1965) among concepts that user can freely traverse. The emphasis
is given to intuitive user interface (Obrenovič and Starčević, 2006) that enables user with minimal technical
skills to start browsing and building the information space without extensive previous training. The ideas of
Memex (Chakrabarti et al., 2000; Cole et al., 2002; Bush, 1945), associations, context + focus techniques and
particularly frames had a profound influence on our notion of how Panorama was designed and implemented.
Panorama follows those concepts and presents an approach in presenting data based on principles of associa-
tive thinking. In employing Panorama approach for information system development several good practices
from existing object-oriented, rapid development and peopleoriented methodologies were considered, while
considering low level of IT expertise required for development.
The remainder of this paper is structured as follows. In section 2, an overview of our approach to implemen-
tation of information systems is given. The following section 3 includes detailed comparison of Panorama
approach and similar approaches in different themes in information systems development. An experiment is
also presented that compares Panorama approach to object-oriented approach on selected use cases. This is
followed by the final section that presents the conclusions and plans for future work.

2 Panorama approach

In the following section first architecture of Panorama will be introduced with elements of data vocabulary
and traversing the information space. Then some aspects of Panorama, as input and reporting module, will
be discussed with other elements of panoramic view on data. This section will also present information
system development with Panorama approach. After short comparison to existing approaches detail steps
will be depicted and their impact on the process.
The distinct value of Panorama approach is in supporting tool Panorama that is used throughout the
process – in development and in using the implemented system. When developing information system
Panorama facilitates definition of data vocabulary and enables automatic transformation of logical model
to implementation model and therefore minimizes the required technical knowledge of users. By enabling
this transformation in Panorama approach users don’t deal with programming phase, but rather put more
attention to analysis and design. After successful implementation of information system, Panorama serves as
intuitive user interface with employing of design patterns (Ahmed and Ashraf, 2007) and enabling traversing
the information space by following associations and focus + context visualization techniques that improve
user experience.

2.1 Data vocabulary and traversing the information space

Panorama has a two-layer architecture. The top layer is the data vocabulary containing all information about
concepts being used. Data vocabulary serves for creating underlying tables with all fields corresponding to
data vocabulary definition including fields that bind tables with links. Data vocabulary characterizes objects
of classes and describes possible interconnections of objects from different classes. Based on the content of
data vocabulary Panorama “interprets” individual attributes and presents appropriate visualization to the
user.
Panorama’s advantage is in bidirectional nature of links in opposite to unidirectional links in documents
for example found on the internet. Panorama is using network data structure with all input and output links

2



Figure 1: Panorama’s 5 dimensional space

Figure 2: Panorama’s user interface

indexed thus providing fast and elegant data retrieval. User has the possibility to compare level of authority,
i.e. number of incoming links, just by clicking neighbour records of the same class and after choosing one of
them he can enable filter on selected record to broaden record which are shown in subsequent search.
When using Panorama user deals with 5-dimensional space as depicted in Figure 1. It follows a visual
information-seeking mantra for designers (Tergan and Keller, 2005): overview first, zoom and filter, then
details-on-demand. User interface supports traversing through this multi-dimensional space and is further-
more divided into two parts (Figure 2):

• on the left hand side are selection windows for setting restrictions and
• on the right hand side is the viewing window for displaying the observed object and its context.

Selection windows contain a list of classes, objects and filters. With the selection of a class (1st

dimension), list of objects (2nd dimension) is simultaneously updated.
The class interconnection is the way of changing point of view of data. Record attributes that belong to
class interconnection data type are implemented as links between data records. All links in Panorama are
bidirectional so the user can jump to records in both directions. Jump to record pointed to by selected link
opens new possibilities for link selection and further data investigation. There is no need to go back in the
tree of selected choices to change the path of investigation as is the case in tree data structure.

3



In Figure 2 an example of opera works, developed by one of the world famous conductors using Panorama
tools is presented. When one selects class Opera Works, the list of operas Don Giovanni, Fidelio, Figaro’s
wedding and others is displayed. Furthermore, by selecting the object (Madame Butterfly in our example),
all the related data within its context is displayed in viewing window. This first of all includes object’s
attributes (3rd dimension) and the list of dependent objects (4th dimension) with its attributes (5th dimension)
respectively. Object’s attribute in our examples is Opera Work Madam Butterfly while dependant objects are
objects from various classes - Roles (Cio-Cio-San, F. B. Pinkerton etc.), Small Roles (Bonze, Cio-Cio-San’s
mother etc.), Silent Roles (Dolore, Cio-Cio-San’s child), Choir (Female Choir), Orchestra Cast and Scenic
Music. All record links are displayed underlined.
Traversing from one information node to another is feasible simply by a mouse click on a selected concept
that consequently becomes the new object of observation. As aforesaid one of the key elements of Panorama
are bidirectional links. They enable unlimited traversal across information space. The observed object can
also be marked as anchor which denotes that, while traversing through related links is limited only to selected
object.
The starting point for all mechanisms in Panorama that facilitate traversing from one object to another is
in the design of specially structured database that enables to establish n-way relationships between objects
and support object recognition process. Objects within the context of observation are stored in the database
and grouped into classes of objects. All objects, instances of selected class, share the same set of properties,
but differ in values of attributes. Among multi-value attributes, linking attributes can be found and they
represent a connection between object of observation and its neighbourhood. Database used in Panorama is
based on concepts of relational databases (RDB) (Codd, 1970; Dietrich, 2004) with functionalities of object
oriented databases (OODB) (Kim, 1990; Bernstein, 1998). Access to data in OODB can be faster because
joins are often not needed (as in a tabular implementation of a RDB). This is because an object can be
retrieved directly by following pointers and without a search. At the ground level navigational databases
approach (Jutla et al., 1999) is followed which incorporates both the network model and hierarchical model
of database interfaces. Navigational techniques use pointers and paths to navigate among data records.
This is in contrast to the relational model (implemented in RDB), which strives to use declarative or logic
programming techniques where system is being queried for result instead of being navigated to.
Panorama enables a simple definition of relationships between objects, without restrictions in quantity. Ob-
jects in Panorama can be linked in the following ways:

• 1:1 or 1:n relationship by a pointer attribute that is a member of source object’s set of attributes.
Panorama uses this type of relationship for defining links. For example: compositions can have the
same title (Symphony No. 1), but different authors (Ludwig van Beethoven, Johannes Brahms etc.).
When traversing through information space, Panorama offers a list of all known authors of selected
compositions and on the other hand all compositions of each author are displayed regarding to the
context.

• m:n relationship can be established by an intermediate class or an object and in its simplest form the
intermediate object contains a two pointer attribute, forming the concatenated key of the object.

• m:n:q relationship (and subsequent cardinalities of relationships) can also be established by interme-
diate objects. The key is formed from concatenation of pointers and cardinality equals to number of
relationships. Intermediate objects behave as normal objects and can be linked to subsequent rela-
tionships as basic objects can. They have their own identity and cannot be fully accessible through
concatenated key. The multiple relationships with cardinality two or more represent the information
node.

So far data vocabulary design of Panorama and structure of user interface was presented, but this is only a
prerequisite for computer aided associative thinking process that is performed by the user.

4



Figure 3: Object recognition process in information space

2.2 Panoramic view on data

Besides controlled input of data and reporting module, Panorama also offers user friendly, easy to use,
intuitive interface for data review and for traversing the information space. In ordinary applications all these
functionalities have yet to be programmed.
Computer aided associative thinking process supported in Panorama is based on object recognition process
(see Figure 3) that starts with observation and perception of the environment. When observing the surround-
ing environment the focus is on the specific object of observation, nevertheless all the neighbouring objects
are also comprehended. Therefore the context of the observed object is identified by the set of objects in
the neighbourhood of that object. Classification of objects into classes is based on the equality of attributes’
sets (and interval of values) that belong to respective objects from a set of objects.
The question that arises is what kind of mechanism to use for neighbourhood observation and how to
recognize each object based upon their attributes? Obviously all information about classes, their attributes
and possible values for each of the attributes is stored somewhere in our brains. This leads to the conclusion
that we need a very powerful data vocabulary, progressive by quantity of stored information and by search
methods and data classification. When a new object is noticed, visible attributes of the object are perceived
and we try to find a match in our data vocabulary. The pattern of recognized attributes defines the most
probable class that the object belongs to. In some cases further analysis of other attributes is needed to
confirm the correct class membership or to classify object into different class.
In Panorama object recognition is based on information residing in two information spaces (see Figure 3):

• data vocabulary space (DVS) and
• known object space (KOS).

The techniques used for recognition of new objects and traversing through information space are based on
several techniques in information visualization (Ware, 2004), especially overview + detail and focus + context
approaches.
The simplicity of usage is one of the key elements of Panorama, because target users are users with very little
technical knowledge of details in implementation. Querying complex data structures is based on intuitive
graphical interface, whereas Panorama does not use query language to explore the information space, but
it’s rather based on drag-and-drop approach by selecting objects with a mouse. This leads to the following

5



advantages:
• User doesn’t need to be familiar with the query language such as SQL (similar approach to

Query-by-Example and Visual Query Builder methods).
• There is no need for being familiar with the data structure, where in navigational approach

users not need to know the names of appropriate attributes to build a query, because a user only follows
associations.

• For traversing the information space, user also does not need to know the problem domain
fully.

A major disadvantage of using query languages is responding with “no result found” message to user in case
of a false condition. User is not interested in what cannot be found, but only wants to know what is available.
With the use of Panorama and traversal that it supports it is impossible to make a wrong turn to an empty
information space.
The problems introduced are solved with intuitive user interface – display of multiple concepts with filtered
data that are in direct relationship with observed object. Traversing through information does not require
entering commands, but only to follow the links that represent a connection with linked objects. The traversal
is feasible in all directions and not limited by iteration. To facilitate quick start usage of Panorama, several
import options exist. Data can be imported for selected class from multiple sources, while Panorama will
recognize the input structure and display it to the user who can take appropriate actions. To maintain high
level of adaptability, filters and anchors are also available to help the user in coping with the large amount
of information and the appropriate formatting and displaying at latter to the screen. Filter is used to simply
restrict our traversal through information space, so we can focus only on desired concepts. Anchor can be
set for multiple classes and it limits the displaying of objects of selected classes only. For integration with
other applications various types (screen, printer, clipboard or file – Excel, DBF, SQL, HTML, XML, TXT,
RTF, PDF) of exports are available. The common quality of creating reports is the analogy with traversing
the information space. Report can simply be defined for selected object of observation and its context or list
of objects with applied restrictions. Again, no technical knowledge is required in a form of entering query
expressions, but simply by selecting appropriate restrictions from data vocabulary.

2.3 Panorama and IS development

The general approach to developing information systems is the Information Systems Development Life Cycle
(SDLC) (Rob, 2006; Avison and Fitzgerald, 2006). Although there are many variants, it has the following
basic structure:

1. feasibility study,
2. system investigation,
3. systems analysis,
4. systems design stage,
5. implementation and
6. review and maintenance.

The use of methodology improves the practice of information systems development, but due to dynamic
environment and constantly changing requirements it’s hard to adopt only one approach with strictly defined
phases, techniques and tools. Panorama with its novel approach to developing information systems follows
examples mainly from Object-oriented methodologies (Rob, 2006; Coad and Yourdon, 1990; Jacobson
et al., 1999), Rapid development methodologies (Martin, 1991; Jeffries et al., 2000; Vidgen et al., 2002;
Milosavljević and Perišić, 2004), People-oriented methodologies (Schreiber et al., 1999; Griggs et al.,
2002; Smaizys and Vasilecas, 2009) and Model-Driven approach (Gonzales-Perez and Henderson-Sellers,
2007; Frankel, 2003).
Panorama also includes some aspects of Method Engineering (ME). ME, sometimes referred to as methodol-
ogy engineering, is the process of designing, constructing, and merging methods and techniques to support
information systems development (Brinkkemper, 1996; Vavpotič and Bajec, 2009). ME is especially impor-
tant in IS development as it is a sign of progress in the adaptation of methodologies to changing IS/IT

6



environments and progress in methodology design itself. ME is often associated with the hierarchical and
bureaucratic approaches of the 1980s as techniques were combined to form meta-methodologies. Normally
it is concerned with the blending of methods and techniques into a methodology or framework. However,
according to (Avison and Fitzgerald, 2006; Henderson-Sellers and Ralyte, 2010), its most recent form is En-
terprise resource planning (ERP) systems, which are combinations of application types rather than methods
and techniques. There are also other known advances in ME such as The OPEN Process Framework (OPF)
(Henderson-Sellers, 2000) and the ISO/IEC 24744 international standard (ISO/IEC-24744, 2007).
The essential building blocks of information systems in object-oriented methodologies are captured by defin-
ing objects – both data and process encapsulated together. The resemblance with using Panorama for
observation and perception of the environment can be found especially in Object-Oriented Analysis (OOA).
In OOA five major activities exists: finding classes and objects, identifying structures, identifying subjects,
defining attributes and defining services. The end result of finding classes and objects is a set of relevant
classes, and for each class the associated objects modelled using the appropriate conventions. The second
activity organizes basic classes and objects into hierarchies that will enable the benefits of inheritance. Af-
terwards, identifying subjects reduces the complexity of the model produced so far by dividing or grouping
into more manageable and understandable subject areas. According to OOA, objects are composed of data
and processing, where defining attributes defines the data and defining services defines the processing. The
similar process is also conducted when building data vocabulary in Panorama. Implementation (step 5)
and review and maintenance (step 6) in SDLC represent the majority of the time spent on project devel-
opment (Lajovic, 2005). To successfully complete projects that don’t require a lot of calculation and don’t
emphasize process oriented aspects (e.g. office management, CRM or record management), Panorama offers
a fast and efficient way. The first four phases (feasibility study, system integration, systems analysis and
systems design) from SDLC are always present, because the development is not feasible without presence of
requirements and designs. Panorama on the other hand tries to minimize the impact of phases 5 and 6 on
the time required for completing the project. Our solution contains required mechanisms for updating and
printing the content of data vocabulary and also controlled input of data with referential integrity checking.
This leads to avoidance of the major part of the work that has to be done in implementation and review and
maintenance phase. Furthermore the vast majority of complications are also avoided:

• The lack of communication between designers and programmers leads to misunderstandings.
• Data model doesn’t cover all the requirements.
• The final application is not fully tested and it contains several bugs.
• Subsequent changes to the application, based on the requirements defined after the completion of the

project etc.
Guidelines similar to those of Panorama’s can also be found in Rapid development methodologies, whereas
Rapid Application Development (RAD) is a response to the need to develop information systems more
quickly (Avison and Fitzgerald, 2006) because of rapidly changing business requirements. James Martin’s
RAD (JMRAD) and Web IS development methodology (WISDM) place emphasis on the early stages of
systems development as is the case of using Panorama. This concerns the definition of requirements, analysis
and design with the use of a language that is of the business and the users, rather than the more technical
language of information systems. As mentioned before, common guidelines can also be found in People-
oriented methodologies, particularly in KADS, CommonKADS and End-user computing (EUC). People-
oriented methodologies encompass the socio-technical view that, in order to be effective, the technology
must fit closely with the social and organizational factors in the application domain. These methodologies
are people oriented in the sense that they attempt to capture the expertise and knowledge of people in
the organization. They emphasize the importance of knowledge management and leverage knowledge as
an important organizational resource. Knowledge, the ability to use information in action for a particular
purpose, is even more important than information, which is more commonplace. Panorama in some aspects
follows End-user computing paradigm, found in people oriented themes, where application is developed by
non-specialist IT people, particularly in the form of spread-sheets. Main advantages are an effective way of
providing some functionality of the information systems in organizations and an increase in user satisfaction.
As Method Engineering emphasizes usage of best practices from systems development, Panorama can also
be analysed using this perspective, but it is limited to data oriented approaches. While Method Engineering
approaches (i.e. OPF) mainly focus on the process (framework, libraries, reusable methods, usage guidelines),

7



thou also mention tools, Panorama is rather focused on the tool support that follows proposed approach.
We can therefore conclude that Panorama follows a kind of knowledgeengineering methodology with iterative
approach and following next steps:

1. Determination of the domain,
2. Identification and grouping of information (project definition),

1. Assembling of important concepts,
2. Defining classes,
3. Defining attributes and relationships and

3. Using the project.
We start with defining the domain and scope (step 1) which coincides with step 1 from SDLC. This includes
the determination of the problem domain, type of questions that the Panorama model should provide answers
to, users responsible for using and maintaining data vocabulary and known objects space etc.
Step 2 deals with construction of data vocabulary that characterizes objects of classes and describes possible
interconnections of objects from different classes. Based on the content of data vocabulary, Panorama
interprets individual attributes and presents appropriate visualization to the user. Defining data vocabulary
is furthermore consisted of three sub steps: assembling of important concepts, defining the classes and
defining the properties.
In assembling of important concepts the main concepts are identified, what properties those concepts have
and what would we like to say about them. It is important to get a comprehensive list of concepts without
paying special attention to overlaps between concepts they represent, relationships among the concepts and
properties.
The next action is to define the classes which are used to group objects with the same properties. When
classes are described they alone don’t provide enough information to answer the questions from step 1,
therefore we must describe the internal structure of concepts.
The phase of defining classes has already selected classes from the list created in step 2.1. Most of the
remaining concepts are likely to be attributes of these classes, mandatory or optional. Besides these pro-
prietary attributes, each object also consists of a set of additional attributes that position selected object
in space and time. By defining relationships among concepts we define foundation for Panorama to enable
traversing through information space. Actions that have been made so far have roughly covered steps 2 to
5 in SDLC and prepared all the necessary requirements to start using Panorama. By using Panorama we
consider entering new data or defining known objects space (step 3). This requires selecting a class, creating
individual instance of that class and filling in perceived attributes.
Panorama tool offers users complete support in using this approach. In initial steps users define data
vocabulary with all the restrictions that apply. The tool supports building data vocabulary from scratch
and also importing data from several resources. When data vocabulary is defined user can enter all the
restrictions that apply and finally couple this schema with actual data again from scratch or from various
data sources. At this stage the use of the project starts where Panorama deals with all translations from
abstract concepts in data vocabulary to actual implementation at the information system level. The traversal
through information space is supported by intuitive user interface which does not require users to learn query
language.

3 Evaluation

In the evaluation part of this research we tackled the following research questions:
1. How does developing computer software with Panorama approach differs from existing, especially

object-oriented approaches?
2. What are the problem domains where application of Panorama approach is the most feasible?
3. What is the impact of Panorama approach regarding time and technical knowledge of users for com-

pleting the software development life cycle?

8



First a comparison between Panorama approach, STRADIS, SSADM, IE, DSDM, OOA and RUP was
conducted following framework for comparing methodologies defined in (Avison and Fitzgerald, 2006). Based
on the findings from that comparison an experiment was carried out with 4 experts and 24 students as
raters, who rated 2 problem domains and 2 approaches. Raters heuristically evaluated the required a priori
knowledge for each of the approaches and time required to complete individual phase was measured.

3.1 Comparison of approaches

3.1.1 Method

We are aware that Panorama approach is not a methodology, because a methodology encompasses much
more than an approach. Nevertheless the framework mentioned before is still appropriate due to its very
generic design. There are several questions that need to be answered to give a complete comparison:

• What are the underlying philosophical assumptions of the methodology? What makes it a legitimate
approach?

• What particular skills are required of the participants?
• What representation, abstractions, and models are employed?
• What aspects of the development process does the methodology cover?
• What is the focus of the methodology? Is it, for example, people-, data-, process-, and/or problem-

oriented? Does it address organizational and strategic issues?
Besides Panorama approach six other approaches from different themes in information systems development
were considered for comparison as follows:

• Structured Analysis, Design and Implementation of Information Systems (STRADIS)
from process-oriented methodologies,

• Structured Systems Analysis and Design Method (SSADM) from blended methodologies,
• Information Engineering (IE) from blended methodologies,
• Dynamic Systems Development Method (DSDM) from rapid development methodologies,
• Object-Oriented Analysis (OOA) from object-oriented methodologies and
• Rational Unified Process (RUP) from object-oriented methodologies.

Each of the seven selected approaches was discussed and mutually compared according to elements of the
framework for comparing methodologies.

3.1.2 Results

There are number of sub elements to philosophy which we will examine in turn. The first sub element
is paradigm where science and systems paradigm are identified as to be of critical importance. In science
paradigm complexity is handled through reductionism, breaking things down into smaller and smaller parts
for examination and explanation. In systems paradigm concern is for the whole picture, the emergent prop-
erties (e.g. the whole is greater than the sum of parts), and the interrelationships between parts of the
whole. All approaches (STRADIS, SSADM, IE, DSDM, OOA, RUP and Panorama) follow science paradigm
with clear reductionist approach and they all accept the ontological position of realism. They all argue
that universe comprises objectively given, immutable objects and structure, whereas these exist as empiri-
cal entities, on their own, independent of the observer’s appreciation of them. One of fairly obvious clue
to the methodology philosophy is the stated objectives. DSDM, although often resulting in the design of
computer systems, is sometimes used to address organizational or general problemsolving issues. STRADIS,
SSADM, IE, OOA and RUP all claim that they are not general problem-solving methodologies, but have
clear objectives to develop computerized information systems. Panorama is also not general problem-solving
approach, but its objective is to combine very heterogeneous information into a stable and networked com-
puterized information system. Very important aspect is to enable display of object and its context and
enable two-way interactions with objects from the context. The third factor relating to philosophy is the
domain of situations that methodologies address. IE is identified as being of the planning, organization,

9



and strategy type. It is an approach adopting the philosophy that an organization needs a strategic plan in
order to function effectively, and that success is related to the identification of information systems that will
benefit the organization and help achieve its strategic objectives. STRADIS, SSADM, DSDM, OOA and
RUP are classified as specific problem-solving methodologies; i.e. they do not focus on identifying systems
required by the organization but begin by assuming that a specific problem is to be addressed. Panorama
can like others also be classified as specific problem-solving methodologies with distinct top-down approach
and identification of organization’s focus. It is also important to notice that Panorama is not intended for
process oriented domains. Most methodologies appear to claim to be general purpose. OOA and RUP are
considered to be general purpose, although is suggested that they are not very helpful for simple, limited
systems or systems with only a few class & objects. STRADIS is also stated to be general purpose and
applicable to any size of system, yet the main technique is data flow diagramming, which is not particularly
suitable for all types of application, for example, the development of management information systems or
web-based systems. SSADM and also STRADIS, IE, OOA and RUP have all been designed primarily for use
in large organizations. Panorama is intended to help develop information systems in smaller environments
or where the target system is PC-based. It is particularly suitable for the following types of application
– office management, CRM, record management, planning, maintenance; and various user types, including
management level.
The second element of the framework, the model, can be investigated in terms of the type of model, the
levels of abstraction of the model, and the orientation or focus of the model. The primary process model used
is the data flow diagram and it can be found in STRADIS, while in SSADM is an important model, although
not the only one. It is also present in IE, but play a less significant role than, for example, in STRADIS.
The data flow diagram is predominantly a process model, and data are only modeled as a by-product of
the processes. In OOA and RUP the basic models are in integration of both process and data orientation,
often in the same diagram, which is a key element of the object-oriented approach. Panorama in contrast
to other approaches uses data-oriented modeling approach such as ER model whereas process orientation is
not handled as an important aspect.
The third element of the framework is that of the techniques and tools that a methodology employs.
STRADIS is an example of a methodology which is largely described in terms of its techniques. A methodol-
ogy which advocates the clear separation of the modeling of data and processes is SSADM. OOA and RUP
use object-oriented techniques and models or models that incorporate the essential combination of data and
process. Tools range from simple drawing tools through to tools supporting the whole development process,
including prototyping, project management, code generation, simulation and so on. IE explicitly suggest that
the techniques are not fundamental part of the methodology and that the current recommended techniques
can be replaced. Panorama approach is mainly presented in a view of a tool that is used in throughout
the development process by developers and users and as a final product by users. It supports the complete
lifecycle of software development and is also deployed to a client and plays a vital role as a toolset which
encompasses model, editor, reports, graphics screen interfaces, code and database generators, configuration
tools etc.
Scope is an indication of the stages of the life cycle of stems development which the methodology covers (0
– it does not mention, 1 – briefly mentioned, 2 – address the area, 3 – covers the stage in some detail) and
is presented in the following Table 1.
The main focus of most compared methodologies is at the analysis and design stages, while maintenance
is by far the worst covered stage. Panorama is also very strong in analysis and design phase but it also
addresses maintenance.
The next element in the framework evaluates the deliverables at each stage and, in particular, the nature
of the final deliverable. This can vary from being an analysis specification to a working implementation of a
system and all its related procedures. STRADIS, SSADM, IE, DSDM, OOA and RUP all include analysis
and design specification, while STRADIS, SSADM, IE, DSDM and RUP also cover working implementation
of a system. In Panorama approach the emphasis is on working implementation of a system while products
at the end of phases include a working version of logical model and data vocabulary.
The background of the methodology broadly identifies its origins in terms of academic or commercial.

10



Table 1: Scope comparison of different software development approaches
Stage STRADIS SSADM IE DSDM OOA RUP Panorama
Strategy 0 2 3 2 0 1 0
Feasibility 3 3 2 3 0 2 1
Analysis 3 3 3 3 3 3 3
Logical design 3 3 3 3 3 3 3
Physical design 3 3 3 3 2 3 3
Programming 2 0 2 2 0 2 3
Testing 2 0 3 2 0 3 2
Implementation 1 2 2 2 0 3 3
Evaluation 1 1 2 0 0 2 0
Maintenance 0 0 1 0 0 0 1

STRADIS, SSADM, IE, DSSDM, OOA and Panorama lie in the commercial sphere, whereas RUP has
academic backgrounds. There is a view that commercial methodologies are not in as widespread use as
is claimed but finding evidence is difficult. According to a research (Avison and Fitzgerald, 2006) 57%
of organizations were using a systems development methodology, but, of these, only 11% used a commer-
cial development methodology, 30% used a commercial methodology adapted for in-house use, and 59% a
methodology which was internally developed and not based on an a commercial methodology. Panorama
approach has a wide user base among different levels in organizations. Because of its design it is interesting
to point out that is especially suitable for less technically oriented users.
The traditional view of information systems development is that a specialist team of professional systems
analysts and designers perform the analysis and design aspects and professional programmers design the
programs and write the code. Although the exact roles have different names, in general systems development
is undertaken by professional technical developers. This view is taken by STRADIS, SSADM, IE, DSDM,
OOA and RUP. Panorama takes a different view, and users have a much more active role by following JAD
(Joint Application Design) which includes domain experts and professional technical developers. Therefore
in Panorama, the users are directly involved in the analysis and design with the professional analysts as
consultants. It has turned out, as seen in the following experiment, that leaving out analysis of current
state could have beneficial consequences. In almost all methodologies considerable training and experience
is necessary for at least some of the players. This may significantly increase the time and costs required
to develop a project. With Panorama time required for implementation is very short because majority of
features are automatically built from data vocabulary.
The last element of the framework is what purchasers actually get for their money. This may consist of soft-
ware, written documentation, an agreed number of hours’ training, a telephone help service, and consultancy
etc. With SSADM the product is large and copious sets of manuals. RUP has a range of documents, books,
and specifications but also has a multimedia website, and indeed claims that the methodology product is
actually delivered using this web technology. Panorama approach produces two types of products:

• a tool that facilitates software development and is at later stage also used on a client side as implemen-
tation and

• the project, based on JAD approach together with documentation.

3.1.3 Discussion

The following table summarizes the view about comparing selected methodologies. It can be argued that
several differences exist among approaches, which is expected, because of their origin in different themes in
information systems development.
Panorama stands out especially because of its data-oriented model and very strong orientation into a working
implementation of a system with object and its context visualization approaches (see Table 2).

11



Table 2: Comparison of software development approaches (abbreviations used are further explained in the
text, following the table)

STRADIS SSADM IE DSDM OOA RUP Panorama
1. Philosophy
a) Paradigm Pa-1 Pa-1 Pa-1 Pa-1 Pa-1 Pa-1 Pa-1
b) Objectives Ob-1 Ob-1 Ob-1 Ob-2 Ob-1 Ob-1 Ob-3
c) Domain Do-1 Do-1 Do-2 Do-1 Do-1 Do-1 Do-3
d) Target Ta-1 Ta-1 Ta-1 Ta-1 Ta-1 Ta-1 Ta-2
2. Model Mo-1 Mo-2 Mo-2 Mo-3 Mo-4 Mo-4 Mo-5
3. Techniques and tools TT-1 TT-2 TT-3 TT-4 TT-5 TT-6 TT-7
4. Scope Sc-1 Sc-2 Sc-3 Sc-4 Sc-5 Sc-6 Sc-7
5. Outputs Ou-1 Ou-1 Ou-1 Ou-1 Ou-1 Ou-1 Ou-2
6. Practice
a) Background Bg-1 Bg-1 Bg-1 Bg-1 Bg-1 Bg-2 Bg-1, Bg-2
b) User base Us-1 Us-1 Us-1 Us-1 Us-1 Us-1 Us-2
c) Participants Ba-1 Ba-1 Ba-1 Ba-1, Ba-2 Ba-1 Ba-1 Ba-1, Ba-2
7. Product Pr-1 Pr-2 Pr-1 Pr-1 Pr-1 Pr-3 Pr-4

Abbreviations used in the Table 2 are as follows:
• Paradigm:

– (Pa-1) Science paradigm, clear reductionist approach, acceptance of the ontological position of
realism.

• Objectives:
– (Ob-1) Not a general problem-solving methodology, but as having clear objectives to develop

computerized information systems.
– (Ob-2) Often resulting in the design of computer systems, but is still sometimes used to address

general problem-solving issues.
– (Ob-3) Not a general problem-solving approach, but to combine very heterogeneous information

into networked IS.
• Domain:

– (Do-1) Specific problem-solving methodologies. Do not focus on identifying the systems required
by the organization but begin by assuming that a specific problem is to be addressed.

– (Do-2) Planning, organization and strategy type, where organization needs a strategic plan in
order to function effectively.

– (Do-3) Specific problem-solving approach. Not intended for process oriented domains.
• Target:

– (Ta-1) General purpose, primarily designed for use in large organizations,
– (Ta-2) Smaller environments, especially office management, CRM, record management, planning,

project management, maintenance etc.
• Model:

– (Mo-1) Data flow diagram is the primary process model,
– (Mo-2) Data flow diagram is an important (although not only one) model,
– (Mo-3) Usually data flow diagram and data oriented model,
– (Mo-4) The basic model is an integration of both process and data orientation, often in the same

diagram, which is a key element of the object-orient approach.
– (Mo-5) Data-oriented model.

• Techniques and tools:
– (TT-1) Largely described in terms of techniques,
– (TT-2) Clear separation of modeling of data and processes. Recommend the tools to some degree.
– (TT-3) Techniques are not fundamental part.

12



– (TT-4) No specific tools are recommended,
– (TT-5) OO techniques. Tools might be helpful but are not necessarily essential.
– (TT-6) OO techniques. Process should not be contemplated without the use of tools, the process

being too complicated and time consuming.
– (TT-7) ER model as primary technique and mainly presented in a view of a tool Panorama.

• Scope:
– (Sc-1) Feasibility, analysis, logical and physical design are covered in detail. Programming and

testing are addressed. Implementation and evaluation are only briefly mentioned.
– (Sc-2) Feasibility, analysis, logical and physical design are covered in detail. Strategy and imple-

mentation are addressed. Evaluation is only briefly mentioned.
– (Sc-3) Strategy, analysis, logical and physical design and testing are covered in detail. Feasibility,

programming, implementation and evaluation are addressed. Maintenance is briefly mentioned.
– (Sc-4) Feasibility, analysis, logical and physical design are covered in detail. Strategy, program-

ming, testing and implementation are addressed.
– (Sc-5) Analysis and logical design are covered in detail. Physical design is addressed.
– (Sc-6) Analysis, logical and physical design, testing, implementation and evaluation are covered

in detail. Feasibility and programming are addressed. Strategy is only briefly mentioned.
– (Sc-7) Analysis, logical and physical design, programming, and implementation are covered in

detail. Testing is addressed. Feasibility and maintenance are only briefly mentioned.
• Outputs:

– (Ou-1) Analysis and design specification and working implementation of a system and
– (Ou-2) Working version of logical model and data vocabulary and working implementation of a

system.
• Background:

– (Bg-1) Commercial and
– (Bg-2) Academic.

• User base:
– (Us-1) Various and numerous and
– (Us-2) Small.

• Participants:
– (Ba-1) Professional technical developers and
– (Ba-2) Business users.

• Product:
– (Pr-1) Documentation,
– (Pr-2) Large and copious sets of manuals,
– (Pr-3) Range of documents, books, specifications and a multimedia website and
– (Pr-4) Tool, project implementation and documentation.

Based on these findings an experiment was conducted to measure the effectiveness of object-oriented (OO)
and Panorama approach on two selected domains, as those approaches share the most commonalities and
OO approach is one of the most widespread in information system development.

3.2 Experiment

3.2.1 Method

Altogether 28 members were chosen to conduct the experiment. 4 members (P1 to P4) from University of
Ljubljana, Faculty of Computer and Information Systems, Information Systems laboratory and 24 students
(S1 to S24) that attended undergraduate program at the same University. Evaluators P1 to P4 were experts
in software development and had extensive practical experience with object-oriented software development,
while evaluators S1 to S24 were users without extensive technical knowledge and inexperienced in software
development. Panorama approach was presented to all evaluators before conducting the experiment, because
none of them had any previous experience.

13



Table 3: Procedure of conducting experiment
Object-oriented approach Panorama approach

Step 1: Use case C1 group A group B
Step 2: Use case C2 group B group A

Before engaging the experiment all evaluators were randomly divided into two groups A and B of equal
size and the same ratio among experts and students. This resulted in individual groups containing 2 expert
members and 12 students. Each of the group had to evaluate both Object-oriented and Panorama approach,
but in turn in different problem domain.
For evaluation purposes two fairly simple use cases C1 and C2 were identified. Use case C1 is concerned about
information system support for cinemas, whereas information about cinema halls, timetables, movies,
genres and customer’s preferred seats by each cinema hall has to be available. Several functionalities had to
be implemented, including performing analyses by customer to see which movie genre are they interested in,
when they go to the cinema etc. Use C2 deals with information support for mobile operators billing.
Support for bundled services, customers, packages, bill detail types, conversation rates and subscription fees
had to be captured. Master-detail view on the expenses related to customer has to be supported to enable
further analyses of rating information.
Each group of participants (A and B) was requested to implement use cases C1 and C2 using Object-oriented
and Panorama approach. The requirements of cases C1 and C2 were described in detail with the natural
language. Participants had a goal to produce a working computer program following given use case and
accompanying documentation. In the last phase of Software Development lifecycle – Evaluation, all results
from participants were independently double-blind evaluated by domain experts according to the original
objectives and requirements. If these requests were not met, users were required to repair their solution
and if afterwards the solution was still inadequate, the participant (P1 to P4 and S1 to S24) was excluded
from the analysis. Due to this issue three participants were excluded from the set of raters which resulted
in reduced number of participants from 27 to 24.
With Object-oriented approach PowerDesigner tool was used in analysis and design phase for user require-
ments analysis and logical design of the system. UML modeling notation was used to capture and define the
problem domain (use case diagrams, class diagrams etc.). Eclipse development environment with a Microsoft
SQL Server database was used in the programming phase. For Panorama approach Panorama tool was used
throughout the software development cycle, following steps defined in section 2.3.
The experiment was then performed in two steps (see Table 3). First group A implemented case study C1
using Object-oriented approach, while group B implemented case study C1 using Panorama approach. In
second step roles have been reversed and group B implemented C2 using object-oriented approach and group
A implemented C2 using Panorama approach.
For each participant several elements were measured, from time required to complete each stage of software
development lifecycle, final outputs and artifacts between the stages and at the end whether the requirements
were met.
The phases of the Software Development approach were evaluated on a time consumption and output basis.
In analysis users were required to get familiar with problem domain and no special outputs were requested
from this phase. In logical design users had to capture the requirements in selected notation (UML use
case and class diagrams for Object-oriented approach and business vocabulary in Panorama). In physical
design transformation of logical into physical model is required when specific environment is selected. The
outputs required from this phase include generation of database schema in Object-oriented approach. In
programming phase users were requested to implement required functionalities and the output is a working
prototype. The following phase of testing deals with implemented prototype and leads to elimination of any
development errors. As already mentioned, in evaluation results are compared to original requirements.
Besides measurements, the questionnaire (Table 4) was introduced to give feedback on different approaches
used for information system development. The aim was to capture users view on important aspects such as

14



Table 4: Questionnaire for measuring the development process
Time spent [min] Outputs

Analysis
Includes user requirements analysis.
Logial design
Design independent of physical environment.
Physical design
Programming
Physical development of the system.
Testing
Planning as well as the testing of systems, programs, and
procedures.
Implementation
Planning and implementation of technical, social, and
organizational aspects.
Evaluation
Measurement and evaluation of the implemented system and a
comparison with the original objectives.

Table 5: Hypotheses of the experiment
H1 Time spent to complete software development of selected use cases is shorter with Panorama

than object-oriented approach.
H2 Panorama puts emphasis on analysis, logical design and testing, while objectoriented approach

on physical design and programming.
H3 Panorama is more appropriate for domains with static (data oriented) rather than dynamic

(process oriented) components.
H4 With Panorama approach in contrast to object-oriented approach, users are more encouraged

to participate, required technical knowledge for development is lower, introducing additional
functionalities is less demanding and the approach is easier to learn.

capability of approach to express static and dynamic aspects of the system, the required effort to progress
from design to implementation stage, level of user participation etc. All questions were in Liker-type format.
The aim of the experiment was to investigate following hypotheses presented in Table 5 and after collecting
the data the analysis was performed using SPSS toolkit.

3.2.2 Results

A total of 2 case studies (C1 and C2), 28 raters (P1 to P4 and S1 to S24) and 2 approaches (Panorama and
Object-oriented) were included in the experiment. Aforementioned resources resulted in 56 executions using
different approaches on different use cases (2 × 2 × 14).
To test for differences in rater bias ANOVA (ANalysis Of VAriance) model was used, including the calculation
of intraclass correlation (ICC) and to describe raters’ marginal distributions graphical method of histograms
was employed.
With intraclass correlation (ICC) (Shrout and Fleiss, 1979; Yaffee, 1998; Hart et al., 2008) rating reliability
was assessed by comparing the variability of different ratings of the same subject (questions from the ques-
tionnaire and effort distributions on Software Development activities by approach) to the total variation
across all ratings and all subjects. ICC is calculated according to the following formula

15



Table 6: Tests of between-subjects effects on dependent variable Total time
F-value Sig.

Corrected model F (3, 55) = 46, 44 ✓
Intercept F (1, 55) = 6.357, 42 ✓
Approach F (1, 55) = 137, 48 ✓
Case study F (1, 55) = 0, 05
Approach × Case study F (1, 55) = 1, 78

Figure 4: Mean time spent to complete software development of use cases

ICC = σ2(subjects)
σ2(subjects) + σ2(raters)

(1)

Because in practice we do not know the true values of σ2(subjects) and σ2(raters), we must instead estimate
them from sample data. With calculation of ICC we have to be aware that there exist several types - Case
1, Case 2 and Case 3. For our experiment Case 2 was selected, where the same set of k raters rate each
subject. This corresponds to a fully-crossed (rater × subject), 2-way ANOVA design in which both subject
and rater are separate effects. Because rater is considered a random effect, this means that k raters in the
study are considered a random sample from a population of potential raters; therefore this type 2 of ICC
estimates the reliability of the larger population of raters.

3.2.2.1 Hypothesis H1

The claim of H1 is that time spent to complete software development of selected use cases is shorter with
Panorama than Object-oriented approach. The hypothesis was tested with 2-way ANOVA model with factors
Approach and Case study and dependent variable Total time. Before conducting ANOVA test, exploratory
data analysis was performed to confirm that data is normally distributed, so first pre-requirement to proceed
with ANOVA was met. Levene’s test of equality of error variances also indicated that the error variance of
the dependent variable is equal across the groups, i.e. the assumption of the ANOVA test has been met.
The results of 2-way ANOVA test are depicted in Table 6, where is clearly seen that the only significant
effect on Total time variable is of the factor Approach, while factor Case study and Approach together with
Case study don’t have a significant effect on Total time.
Based on this findings we can reject the null hypothesis of mean times spent to complete software development
of selected cases are the same for Object-oriented and Panorama approach. This leads to accepting alternative
hypothesis of mean times for development being significantly different. Descriptive statistics in Table 7 and
graphical presentation of mean time spent to complete software development of use cases clearly show that
time required to complete development is shorter with Panorama than Object-oriented approach.
To conclude, there is a significant difference between the mean time spent to complete software development
of selected use cases using Object-oriented and Panorama approach, with F (1, 55) = 137, 48 and level of
significance p < 0, 05 and that time is shorter with Panorama than object-oriented approach.
With use cases C1 and C2 the development with Panorama was 25% faster than with Object-oriented
approach, as depicted in Figure 4.

16



Table 7: Descriptive statistics of total time
Approach Case study N Mean

C1 14 12h 59min

C2 14 13h 25minObject-oriented
Total 28 13h 22min

C1 14 9h 59min

C2 14 9h 40minPanorama
Total 28 9h 49min

C1 14 11h 29min

C2 14 11h 33minTotal
Total 28 11h 31min

Figure 5: Mean effort distribution on Software Development activities grouped by significant factors

3.2.2.2 Hypothesis H2

Hypothesis H2 asserts that Panorama puts emphasis on analysis, logical design and testing, while object-
oriented approach on physical design and programming.
When examining the data we can see from Figure 4 that effort distribution by approaches (Object-oriented
and Panorama) is not equally divided. The comparison depicts distribution on Software Development ac-
tivities by approaches, where we can notice that in Panorama approach majority of the time is spent in
Analysis, Logical design and Testing, while no time is allocated to Programming and Physical design. In
contrast to Panorama is in Object-oriented approach time allocated to Programming and Physical design
quite substantial. The Programming and Physical design phase in Panorama is omitted, due to the fact that
user defines all the requirements in Analysis and Logical design, while the code at implementation level is
automatically generated and supported by Panorama tool.
For better comparison of effort distribution on Software Development activities the visualization depicted
in Figure 5 groups aforementioned phases and approaches. The data is normalized regarding the total
time required to complete use cases C1 and C2 and belonging percentage of time of selected phase is than
displayed.
To test the significance of the results multiple 1-way ANOVA tests with factor Approach and following groups
of dependent variables:

• Analysis, logical design and testing;
• Physical design and programming and
• Implementation and evaluation

were conducted. Exploratory data analysis confirmed that data is normally distributed and Levene’s test also
confirmed the assumption of the ANOVA test. The results of ANOVA test and accompanying descriptive
statistics are depicted in, where we can confirm for all 3 factors I, II and III that the mean effort distribution
between Object-oriented and Panorama approach differs significantly (see Table 8).

17



Table 8: ANOVA results and descriptive statistics of combined effort distributions on Software Development
activities

Approach N Mean F-value Sig.
I) Analysis, logical design and testing

Object-oriented 28 37, 76%
Panorama 28 77, 64% F (1, 54) = 1, 755 ✓

Total 56 57, 70%
II) Physical design and programming

Object-oriented 28 47, 65%
Panorama 28 0, 00% F (1, 54) = 4, 668 ✓

Total 56 23, 83%
III) Implementation and evaluation

Object-oriented 28 14, 59%
Panorama 28 22, 36% F (1, 54) = 107, 00 ✓

Total 56 18, 47%

The most significant is difference in mean effort distributions of Physical design and programming between
Object-oriented and Panorama approach with F (1, 54) = 4, 668 and level of significance p < 0, 05, which
confirms the fact that in Panorama users don’t spent time for physical design and programming, because
this is done automatically by underlying system. The second most significant difference in mean effort
distributions is of Analysis, logical design and testing between Object-oriented and Panorama approach
with F (1, 54) = 1, 755 and level of significance p < 0, 05, which confirms the fact that this phases are
significantly more addressed in Panorama than in Object-oriented approach. Mean effort distributions of
Implementation and evaluation is with F (1, 54) = 107, 00 and level of significance p < 0, 05 also significant
but is less notable than with previous factors. Based on these findings we can confirm hypothesis H2.
More detail interpretation of time allocations by software development activities and critical overview can
be found in (Kruchten, 2008).

3.2.2.3 Questionnaire analysis
The results of the questionnaire are summarized in Table 9 and grouped by selected approach. Each of the
7 questions was rated on a Likert-type scale from 1 to 10.
The interpretation of Likert-scale values from Table 9 are as follows:

C) What is your experience with the methodology you are assessing?
• 1 - somewhat familiar, 4 - knows its details, 7 - I’ve used it, 10 - I’ve created it

D) The notation is capable of expressing models of both static aspects of the system (e.g. structure) and
dynamic aspects (e.g. processing)?

• 1 - strongly disagree, 4 - disagree, 7 - agree, 10 - strongly agree
E) Did you find the notation and modeling language easy to learn?

• 1 - very hard, 4 - hard, 7 - fairly easy, 10 - very easy
F) Identify the required a priori technical knowledge for conducting analysis and design stage of software

development life cycle!
• 1 - very detailed software development knowledge, 3 - advanced software development knowledge,

7 - basics of software development, 10 - intuitive approach, very little knowledge required
G) Estimate the effort required to progress from design into implementation stage!

• 1 - manually with user intervention, 3 - semi-automatically with major user interventions, 7 -
semi-automatically with minor user interventions, 10 - automatically, without user intervention

H) How well is user participation encouraged and supported?
• 1 - very difficult, only professional developers are involved in software development, 4 - satisfactory,

users are involved on their request, 7 - intermediate, with users involvement in early stages of

18



Table 9: ANOVA results and descriptive statistics of question analysis from questionnaire
Mean score by approach
OO Panorama Total F-value Sig.

C. What is your experience with the
methodology you are assessing?

3, 89 2, 32 3, 11 F (1, 54) = 8, 86 ✓

D. The notation is capable of expressing
models of both static aspects of the
system (e.g. structure) and dynamic
aspects (e.g. processing)?

8, 57 4, 32 6, 45 F (1, 54) = 187, 15 ✓

E. Did you find the notation and modeling
language easy to learn?

6, 07 7, 57 6, 82 F (1, 54) = 38, 04 ✓

F. Identify the required a priori technical
knowledge for conducting analysis and
design stage of software development life
cycle!

6, 09 7, 29 6, 68 F (1, 54) = 20, 81 ✓

G. Estimate the effort required to progress
from design into implementation stage!

4, 82 9, 07 6, 95 F (1, 54) = 379, 69 ✓

H. How well is user participation encouraged
and supported?

7, 04 9, 32 8, 18 F (1, 54) = 87, 63 ✓

I. Estimate the effort required introducing
additional functionalities in working
software product!

4, 46 8, 21 6, 34 F (1, 54) = 267, 93 ✓

software development, 10 - very well, the user can even build a simple system from scratch to
working prototype

I) Estimate the effort required introducing additional functionalities in working software product!
• 1 - very demanding, it requires complete reorganization of software product and involvement of

multiple actors, 4 - intermediate, new user requirements are passed to developers, 8 - minor changes
can be done immediately with cooperation between users and developers, 10 - very intuitive, user
can introduce changes to software product without the support of technical staff

The first question (C) addressed evaluators’ background and their experience with given approach. As
expected, evaluators had more experience in Object-oriented approach (mean = 3, 89) than Panorama (mean
= 2, 32). That’s because they previously hadn’t worked with Panorama but evaluators S1 to S24 had
introductory knowledge and P1 to P4 had experience in Object-oriented approach. Mean experience with
the methodology is with F (1, 54) = 8, 86 and level of significance p < 0, 05, which confirms that evaluators
have different experience in selected approaches.

3.2.2.4 Hypothesis H3

The claim of H3 is that Panorama is more appropriate for domains with static (data oriented) rather than
dynamic (process oriented) components. This aspect of development approach was addressed in question
D (see Table 9) where users had to indicate whether the approach is capable of expressing models of both
static aspects of the system (e.g. structure) and dynamic aspects (e.g. processing). The difference in mean
notation capability of expressing dynamics with F (1, 54) = 187, 15 and level of significance p < 0, 05,
which confirms that null hypothesis can be rejected and alternative hypothesis is confirmed. Mean notation
capability of expressing dynamics in Object-oriented approach is 8, 57 and with Panorama 4, 32, that leads
to conclusion that Panorama with score of 4, 32 on a 1 to 10 scale is not appropriate for problem domains
with emphasis on processing but rather for data oriented applications. Object-oriented approach has, as
expected, scored very high score, because its notation is capable of expressing statics and dynamics of the
system.

19



Table 10: ANOVA results and descriptive statistics of question analysis from questionnaire
Consistency Absolute agreement

Single measures
ICC(2, 1)

Average measures
ICC(2, k)

Single measures
ICC(2, 1)

Average measures
ICC(2, k)

Experts (k = 4) 0, 949 0, 987 0, 943 0, 985
Students (k = 24) 0, 959 0, 998 0, 959 0, 998
All (k = 28) 0, 948 0, 998 0, 946 0, 998

3.2.2.5 Hypothesis H4

Hypothesis H4 asserts that with Panorama approach in contrast to Object-oriented, users are more encour-
aged to participate, required technical knowledge for development is lower, introducing additional function-
alities is less demanding and the approach is easier to learn. The aforementioned hypothesis is concerned
about questions E, F , G, H and I from the questionnaire depicted in Table 9.
Based on analysis of aforementioned questions from Table 9 (simplicity to learn the approach, low a priori
technical knowledge, simplicity of progress from design to implementation, user participation and simplicity
of introducing additional functionalities) we can confirm with significance that hypothesis H4 is valid.

3.2.2.6 Association and bias of raters
Intraclass correlation (ICC) across raters P1 to P4 and S1 to S24 was analyzed. In our experiment this
was the case 2 ICC with the same set of raters that rate each subject, which corresponds to a fully-crossed
(rater × subject), 2-way ANOVA design in which both subject and rater are separate effects. There were
28 raters (P1 to P4 and S1 to S24) and 30 subjects (8 questions about the development process and 7 effort
distributions of development time) included in ICC calculation. In case 2, rater is considered a random
affects, which means the raters in the study are considered a random sample from a population of potential
raters. The case 2 ICC estimates the reliability of the larger population of raters. ICC was used separately
to evaluate expert and student users and to estimate the reliability of a single rating (consistency) and the
reliability of a mean of several ratings (absolute agreement). The result of both measurements is depicted
in Table 10.
The results in Table 10 denote that there exist a statistically significant positive correlation between all raters
- experts and students. Both reliability of a single rating and reliability of a mean of several ratings are high.
ICC approaches 1 when there is no variance within subjects, indicating total variation in measurements on
the Likert scale is due solely to the target variable. ICC is high because any given subject tends to have the
same score across the raters. ICC is also interpreted as the ratio of variance explained by the independent
variable divided by total variance, where total variance is the explained variance plus variance due to the
raters plus residual variance. High ICC is a result of no or little variance due to the raters and no residual
variance to explain.
Based on the nature of Case 2 intraclass correlation with random effects that was used, the results obtained
can be generalized to other raters.

3.2.3 Discussion

The results show that time spent to complete software development of selected use cases C1 and C2 is shorter
when using Panorama approach opposed to using Object-oriented approach (see Figure 4). In Panorama
approach the emphasis is on logical design stage, where business vocabulary is constructed and on testing
stage, where actual data is inserted into the system and actual testing is performed. On the other hand with
Object-oriented approach extra work is conducted in programming and physical design stage.
In average this results in 25% less time required to complete software development life cycle using Panorama
approach towards Object-oriented. It has to be noted that this is valid for problem domains with emphasis

20



on data oriented aspects rather than process oriented.
The results of questionnaire analysis (see Table 8) show that the experience of raters is higher in Object-
oriented approach due to raters’ background and high dissemination of Object-oriented approach in modern
software development projects. Panorama approach is not as strong as Object-oriented approach in ex-
pressing dynamic aspects (e.g. processing) of the system, while it focuses on static aspects (e.g. structure).
Notation and modeling language is slightly easier to learn in Panorama approach as it is mainly focused on
data modeling techniques. The same applies to a priori technical knowledge for analysis and design. As pro-
gressing from design to implementation stage is concerned Panorama turns out to be preferred approach due
to availability of automatic code generation and transformation from logical to physical design. Following
JAD approach Panorama also emphasizes user participation and received better score than Object-oriented
approach. An important aspect is also the effort for introducing additional functionalities in working soft-
ware product, whereas Panorama approach scored higher than object-oriented approach because of almost
nonexistent programming phase which is automatically implemented in Panorama tool.

4 Conclusions and future work

In this paper a software solution for facilitating associative thinking paradigm, Panorama, was presented.
The main goal was to create a “user friendly” tool for information management and software development
for people with low IT skills. This was accomplished by introducing visualization in multi-dimensional
space with focus on the chosen node (object of observation) and its nearest neighbours (object’s context).
Only semantically nearest nodes with appropriate attributes are being displayed with a possibility of freely
traversing through information space by changing to the new object of observation. The user interface we
have developed is very simple and pursues presenting and organizing the information on the screen in a way
that user is not overloaded but still has the ability to expand the context and view the situation in all its
extent (following focus + context information visualization techniques).
We can conclude that the conceptual idea of using associative thinking paradigm in computer aided software
development was successfully realized in several real world cases. By following the proposed methodology
with the Panorama tool, the user is given an opportunity to design the application and start using it, with-
out extensive technical knowledge. Panorama especially minimizes the impact on the last two phases in
Software Development Life Cycle (implementation and review), due to existence of all required mechanisms
for updating and viewing the content of data vocabulary and controlling the input of data with referential
integrity checking. Future trends in information visualization were also addressed. One of them was utiliza-
tion of information visualization techniques in information systems development process that was realized in
Panorama tool.
With the detailed comparison of Panorama approach to existing software development approaches Panorama
is positioned as a specific problem-solving approach. It is not intended for process oriented domains, but
rather for smaller environments, especially office management, CRM, record management, planning, main-
tenance etc. The conducted experiment pointed out that there was less time spent to complete software
development of selected use cases than using Object-oriented techniques and approaches. One of the findings
is also the effort distribution of Software Development activities. In Object-oriented approaches emphasis
is on design and programming, while Panorama eliminates programming activity and is focused mainly on
design and testing.
This research has several limitations as already pointed out in section 3. The Panorama approach is suitable
only for problem domains that emphasis data oriented problem domains while it lacks to support the ones
with process oriented aspects.
The results of this research could also assist ontology management community, where Panorama can be used
as an ontology editor. Export of Panorama’s data vocabulary and known objects space to XML format
is already supported, but clearly further work is required to make data available in ontological languages
with more expressive power. In our future work we will therefore expand the variety of export formats that

21



Panorama supports. Data from Panorama available in a form of ontology could enable reuse of knowledge
in intelligent systems with inference capabilities to derive new knowledge.

References
Ahmed, S. and Ashraf, G. (2007). Model-based user interface engineering with design patterns. Journal of

Systems and Software, 80(8):1408–1422.

Atkinson, R. C. and Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes.
The Psychology of Learning and Motivation: Advances in Research and Theory, 2:89–195.

Avison, D. and Fitzgerald, G. (2006). Information Systems Development: Methodologies, Techniques and
Tools, 4th edition. McGraw-Hill, Maidenhead, UK.

Bernstein, P. A. (1998). Repositories and Object Oriented Databases. ACM SIGMOD Record, 27(1):88–96.

Brinkkemper, S. (1996). Method engineering: Engineering of information systems development methods and
tools. Information and Software Technology, 38(4):275–280.

Bush, V. (1945). As we may think. The Atlantic Monthly, 176.

Caramia, M. and Felici, G. (2006). Mining relevant information on the Web: a clique-based approach.
International Journal of Production Research, 44(14):2771–2787.

Chakrabarti, S., Srivastava, S., Subramanyam, M., and Tiwari, M. (2000). Using Memex to archive and
mine community Web browsing experience. Computer Networks, 33(1-6):669–684.

Coad, P. and Yourdon, E. (1990). Object Oriented Analysis, 2nd edition. Prentice Hall, New York, USA.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the
ACM, 13(6):377–387.

Cole, C., Mandelblatt, B., and Stevenson, J. (2002). Visualizing a high recall search strategy output for
undergraduates in an exploration stage of researching a term paper. Information Processing & Management,
38(1):37–54.

Dietrich, S. W. (2004). An Advanced Course in Database Systems: Beyond Relational Databases. Prentice
Hall, New York, USA.

Frankel, D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley.

Gonzales-Perez, C. and Henderson-Sellers, B. (2007). Modelling software development methodologies: A
conceptual foundation. Journal of Systems and Software, 80(11):1778–1796.

Griggs, K. A., Wild, R. H., and Li, E. Y. (2002). A Web-based knowledge management environment for
consulting and research organizations. Journal of Computer Information Systems, 42(5):110–118.

Harbron, T. R. (1988). File Systems: Structures and Algorithms. Prentice Hall, New York, USA.

Hart, T. A., Chaparro, B. S., and Halcomb, C. G. (2008). Evaluating websites for older adults: adherence to
’senior-friendly’ guidelines and end-user performance. Behaviour & Information Technology, 27(3):191–199.

Henderson-Sellers, B. (2000). The OPEN framework for enhancing productivity. IEEE Software, 17(2):53–+.

Henderson-Sellers, B. and Ralyte, J. (2010). Situational Method Engineering: State-of-the-Art Review.
Journal of Universal Computer Science, 16(3):424–478.

ISO/IEC-24744 (2007). Software Engineering - Metamodel for Development Methodologies. Technical report.

22



Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process. Addison-
Wesley, Boston, USA.

Jeffries, R., Anderson, A., and Hendrickson, C. (2000). Extreme Programming Installed. Addison-Wesley,
Boston, USA.

Jutla, D., Bodorik, P., and Wang, Y. (1999). Developing internet e-commerce benchmarks. Information
Systems, 24(6):475–493.

Kim, W. (1990). Introduction to Object-Oriented Databases. MIT Press, Cambridge, USA.

Kruchten, P. (2008). What do software architects really do? Journal of Systems and Software, 81(12):2413–
2416.

Lajovic, I. (2005). Panoramic view on databases. In Proceedings of the Slovenian Informatics conference.

Lavbič, D., Vasilecas, O., and Rupnik, R. (2010). Ontology-based multi-agent system to support busi-
ness users and management. Technological and Economic Development of Economy, 16(2):327–347.
2010/TEDE.

Martin, J. (1991). Rapid Application Development. MacMillan Publishing, Indianapolis, USA.

Milosavljević, G. and Perišić, B. (2004). A Method and a Tool for Rapid Prototyping of Large-Scale Business
Information Systems. Computer Science and Information Systems, 1(2).

Obrenovič, Z. and Starčević, D. (2006). Adapting the Unified Software Development Process for User
Interface Development. Computer Science and Information Systems, 3(1).

Ortner, E. (1991). Enterprise Data Modeling as a Basis for Integrated Information-Processing in Business
and Administration. Wirtschaftsinformatik, 33(4):269–280.

Rob, M. A. (2006). Dilemma between the structured and object-oriented approaches to systems analysis
and design. Journal of Computer Information Systems, 46(3):32–42.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde, W., and Wielinga,
B. (1999). Knowledge engineering and management - The CommonKADS methodology. The MIT Press:
Cambridge, Massachusetts, London, England.

Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations - Uses in assessing rater reliability. Psychological
Bulletin, 86(2):420–428.

Smaizys, A. and Vasilecas, O. (2009). Business Rules based agile ERP systems development. Informatica,
20(3):439–460.

Tell, B. V. (1992). Towards Intelligent Management of Information Resources - a Case for Special-Libraries
or the National Intelligence. Libri, 42(1):20–34.

Tergan, S.-O. and Keller, T. (2005). Knowledge and Information Visualization: Searching for Synergies,
volume 3426 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany.

Tharp, A. L. (1988). File organization and processing. John Wiley & Sons, New York, USA.

Vavpotič, D. and Bajec, M. (2009). An approach for concurrent evaluation of technical and social aspects
of software development methodologies. Information and Software Technology, 51(2):528–545.

Vidgen, R., Avison, D. E., Wood, R., and Wood-Harper, A. T. (2002). Developing Internet Applications.
McGraw-Hill, Oxford, UK.

Ware, C. (2004). Information visualization: Perception for design, 2nd edition. Morgan Kaufmann, San
Francisco, USA.

Waugh, N. C. and Norman, D. A. (1965). Primary Memory. Psychological Review, 72(2):89–104.

Yaffee, R. A. (1998). Enhancement of Reliability Analysis: Application of Intraclass Correlations with
SPSS/Windows v.8.

23


	Abstract
	Keywords
	Introduction
	Panorama approach
	Data vocabulary and traversing the information space
	Panoramic view on data
	Panorama and IS development

	Evaluation
	Comparison of approaches
	Method
	Results
	Discussion

	Experiment
	Method
	Results
	Discussion


	Conclusions and future work

