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Abstract

Due to numerous public information sources and services, many methods to combine heterogeneous data were
proposed recently. However, general end-to-end solutions are still rare, especially systems taking into account
different context dimensions. Therefore, the techniques often prove insufficient or are limited to a certain
domain. In this paper we briefly review and rigorously evaluate a general framework for data matching
and merging. The framework employs collective entity resolution and redundancy elimination using three
dimensions of context types. In order to achieve domain independent results, data is enriched with semantics
and trust. However, the main contribution of the paper is evaluation on five public domain-incompatible
datasets. Furthermore, we introduce additional attribute, relationship, semantic and trust metrics, which
allow complete framework management. Besides overall results improvement within the framework, metrics
could be of independent interest.
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1 Introduction

Heterogeneous data matching and merging is due to increasing amount of linked and open (on-line) data sources
rapidly becoming a common need in various fields. Different scenarios demand for analyzing heterogeneous
datasets collectively, enriching data with some on-line data source or reducing redundancy among datasets by
merging them into one. Literature provides several state-of-the-art approaches for matching and merging,
although there is a lack of general solutions combining different dimensions arising during the matching and
merging execution. We propose and evaluate a general and complete solution that allows a joint control over
these dimensions.

Data sources commonly include not only network data, but also data with semantics. Thus a state-of-the-art
solution should employ semantically elevated algorithms (i.e. algorithms that can process data with semantics
according to an ontology), to fully exploit the data at hand. However, due to a vast diversity of data
sources, an adequate data architecture also employed. In particular, the architecture should support all
types and formats of data, and provide appropriate data for each algorithm. As algorithms favor different
representations and levels of semantics behind the data, architecture should be structured appropriately.

Due to different origin of (heterogeneous) data sources, the trustworthiness (or accuracy) of their data can
often be questionable. Specially, when many such datasets are merged, the results are likely to be inexact.
A common approach for dealing with data sources that provide untrustworthy or conflicting statements, is
the use of trust management systems and techniques. Thus matching and merging should be advanced to a
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trust-aware level, to jointly optimize trustworthiness of data and accuracy of matching or merging. Such
collective optimization can significantly improve over other approaches.

The paper proposes and demonstrates a general framework for matching and merging execution. An adequate
data architecture enables either pure related data, in the form of networks, or data with semantics, in the
form of ontologies. Different datasets are merged using collective entity resolution and redundancy elimination
algorithms, enhanced with trust management techniques. Algorithms are managed through the use of different
contexts that characterize each particular execution, and can be used to jointly control various dimensions of
variability of matching and merging execution. Proposed framework is also fully implemented and evaluated
against real-world datasets.

The rest of the paper is structured as follows. The following section gives a brief overview of the related work,
focusing mainly on trust-aware matching and merging. Next, section 3, presents employed data architecture
and discusses semantic elevation of the proposition. Section 4 formalizes the notion of trust and introduces
the proposed trust management techniques. General framework, and accompanying algorithms, for matching
and merging are presented in section 5. Experimental demonstration of the proposed framework is shown in
section 6, and further discussed in section 7. Section 8 concludes the paper.

2 Related work

Recent literature proposes several state-of-the-art solutions for matching and merging data sources. Analogous
problems appear in many different areas. When observing the area of matching and merging on a broader
basis, we used ideas from different approaches in the fields of data integration (Bhattacharya and Getoor,
2004; Cohen, 2000; Hernandez and Stolfo, 1995; Lenzerini, 2002), data deduplication (Ananthakrishna et al.,
2002; Kalashnikov and Mehrotra, 2006; Monge and Elkan, 1996), information retrieval, schema and ontology
matching (Castano et al., 2006, 2010; Euzenat and Shvaiko, 2007; Rahm and Bernstein, 2001), and (related)
entity resolution (Bhattacharya and Getoor, 2004, 2007).

The propositions mainly address only selected issues of more general matching and merging problem. In
particular, approaches only partially support the variability of the execution, commonly only homogeneous
sources, with predefined level of semantics, are employed, or the approaches discard the trustworthiness of
data and sources of origin. A Mapping-based Object Matching - MOMA System (Thor and Rahm, 2007)
presents the use of workflows and combination of several matching algorithms within a single data source.
Our approach uses attribute resolution technique to align arbitrary data sources and prepares them for
further matching and merging techniques. The general problem of many approaches over large-scale datasets
is response time to first possible results. Pay-As-You-Go ER (Whang et al., 2010) system maximizes entity
resolution progress with a limited amount of work according to defined constraints. It orders merging pairs
using these constraints and outputs partial results as soon as possible. We run our algorithms on network data
and merge pairs according to similarity value using contexts, where the user can observe the whole network
during merging and matching execution. Networks seemed the most appropriate to design our approach.
They enable us to dynamically change and read structure as it is done by techniques of label propagation
(Šubelj and Bajec, 2011b) or community detection (Šubelj and Bajec, 2011a) where each community presents
matched data.

The proposed matching and merging approach employs the use of contexts using semantics, trust and
ontologies. The problem of matching references to an underlying entity in natural language processing is
known as coreference resolution (Ng, 2008). Traditionally the problem was solved using a set of constraints
of features, but improvements were achieved by using multiple matching models and propagation of shared
attributes across references (Lee et al., 2011). The idea of using different attribute, related and semantic
metrics is used from similar categorization of features on simple pairwise approach which outperformed
complex coreference resolution models (Bengtson and Roth, 2008). Use of ontologies, axioms and their
inference as also used in text mining (Štajner and Mladenić, 2009), additionally gives us schema, knowledge
modelling and control mechanism (Lavbič et al., 2010) during matching and merging execution.

Literature also provides various trust-based, or trust-aware, approaches for matching and merging (Nagy
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et al., 2008; Richardson et al., 2003). Although they formally exploit trust in the data, they do not represent
a general or complete solution. Mainly, they explore the idea of Web of Trust, to model trust or belief in
different entities. Related work on Web of Trust exists in the fields of identity verification (Blaze Software,
1999), information retrieval (Chakrabarti et al., 1998), social network analysis (Domingos and Richardson,
2001; Kleinberg, 1999), data mining and pattern recognition (Kautz et al., 1997; Resnick et al., 1994). Our
work also relates to more general research of trust management and techniques that provide formal means
for computing with trust (e.g. (Trček, 2009)). Some research has also been done on using the strategy of
disinformation (Whang and Garcia-Molina, 2013). The strategy focuses on matching and merging the records
with bogus information and is useful for robustness evaluation. The use of trust management context in our
approach is defined on levels from whole source to attribute values.

This paper superseds our previously published theoretical concepts of the same system (Šubelj et al., 2011).
We did some minor changes to definitions of ontology usage, renamed some notions (e.g. Due to disambiguation
we are referring to relations as related data.) and introduced an optimization by checking only neighbouring
data (19th line of algorithm 5.1). The main contributions over the previous paper are experiments (see
Section 6) of all proposed methods and metrics on real datasets. Implementations of general components are
in-depth presented and therefore it is shown the usage of semantics and trust improves overall results.

3 Data architecture

An adequate data architecture is of vital importance for efficient matching and merging. Key issues arising
are as follows:

1. architecture should allow for data from heterogeneous sources, commonly in various formats,
2. semantical component of data should be addressed properly and
3. architecture should also deal with (partially) missing and uncertain data.

To achieve superior performance, we propose a three level architecture (see Figure 3). Standard network data
representation on the bottom level (data level) is enriched with semantics (semantic level) and thus elevated
towards the topmost real world level (abstract level). Datasets on data level are represented with networks,
when the semantics are employed through the use of ontologies.

Every dataset is (preferably) represented on data and semantic level. Although both describe the same set of
entities on abstract level, the representation on each level is independent from others. This separation resides
from the fact that different algorithms of matching and merging execution privilege different representations
of data - either pure related or semantically elevated representation. Separation thus results in more accurate
and efficient matching and merging, moreover, representations can complement each other in order to boost
the performance.

The following section gives a brief introduction to networks, used for data level representation. Section 3.2
describes ontologies and semantic elevation of data level (i.e. semantic level). Proposed data architecture is
formalized and further discussed in Section 3.3.

3.1 Representation with networks

Most natural representation of any related data are networks (Newman, 2010). They are based upon
mathematical objects called graphs. Informally speaking, graph consists of a collection of points, called
vertices, and links between these points, called edges (see Figure 1).

Let VN , EN be a set of vertices, edges for some graph N respectively. We define graph N as N = (VN , EN )
where

VN = {v1, v2 . . . vn} (1)
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Figure 1: (a) directed graph; (b) labeled undirected multigraph (labels are represented graphically); (c)
network representing a group of related restaurants (circles correspond to restaurants, hexagons to their
types, triangles to different phone numbers, while squares represent respective cities).

EN ⊆ {{vi, vj}| vi, vj ∈ VN ∧ i < j} (2)

Edges are sets of vertices, hence they are not directed (undirected graph). In the case of directed graphs
Equation (2) rewrites to

EN ⊆ {(vi, vj)| vi, vj ∈ VN ∧ i 6= j} (3)

where (vi, vj) is an edge from vi to vj . The definition can be further generalized by allowing multiple
edges between two vertices and loops (edges that connect vertices with themselves). Such graphs are called
multigraphs (see Figure 1 b).

In practical applications we commonly strive to store some additional information along with the vertices
and edges. Formally, we define labels or weights for each node and edge in the graph – they represent a set of
properties that can also be described using two attribute functions

AVN
: VN → ΣVN

1 × ΣVN
2 × . . . (4)

AEN
: EN → ΣEN

1 × ΣEN
2 × . . . (5)

AN = (AVN
, AEN

), where ΣVG
i , ΣEG

i are sets of all possible vertex, edge attribute values respectively.

Networks are most commonly seen as labeled, or weighted, multigraphs with both directed and undirected
edges (see Figure 1 c). Vertices of a network represent some entities, and edges represent related data between
them. A (related) dataset, represented with a network on the data level, is thus defined as (N,AN ).

3.2 Semantic elevation using ontologies

Ontologies are formal definitions of classes, related data, functions and other objects. An ontology is an
explicit specification of conceptualization (Gruber, 1993), which is is an abstract view of the knowledge
we wish to represent. It can be defined as a network of entities, restricted and annotated with a set of
axioms. Let EO, AO be the sets of entities, axioms for some ontology O respectively. We propose a dataset
representation with an ontology on semantic level (an example in Figure 2 as O = (EO, AO) where
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Figure 2: A possible ontology over Restaurants dataset (description in Section 6.1). Classes are represented
by circles, related data by half-white rectangles and attributes by full-colour rectangles. Key concepts of the
ontology are Restaurant, Address, Phone and Employee.

EO ⊆ EC ∪ EI ∪ ER ∪ EA (6)

AO ⊆ {a| Ea
O ⊆ EO ∧ a axiom on Ea

O} (7)

Entities EO consist of classes EC (concepts), individuals EI (instances), related data ER (among classes
and individuals) and attributes EA (properties of classes); and axioms AO are assertions (over entities) in a
logical form that together comprise the overall theory described by ontology O.

This paper focuses on ontologies based on descriptive logic that, besides assigning meaning to axioms, enable
also reasoning capabilities (Horrocks and Sattler, 2001). The latter can be used to compute consequences of
the previously made assumptions (queries), or to discover non-intended consequences and inconsistencies
within the ontology.

One of the most prominent applications of ontologies is in the domain of semantic interoperability (among
heterogeneous software systems). While pure semantics concerns the study of meanings, we define semantic
elevation as a process to achieve semantic interoperability which be considered as a subset of information
integration.

Thus one of the key aspects of semantic elevation is to derive a common representation of classes, individuals,
related data and attributes within some ontology. We employ a concept of knowledge chunks (Castano
et al., 2010), where each entity is represented with its name, set of semantically related data, attributes
and identifiers. All of the data about a certain entity is thus transformed into attribute-value format, with
an identifier of the data source of origin appended to each value. Exact description of the transformation
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Figure 3: (a) information-based view of the data architecture; (b) data-based view of the data architecture

between networked data and knowledge chunks is not given, although it is very similar to the definition of
inferred axioms in Equation (12), section 3.3. Knowledge chunks, denoted k ∈ K, thus provide a (common)
synthetic representation of an ontology that is used during the matching and merging execution. For more
details on knowledge chunks, and their construction from a RDF(S)1 repository or an OWL2, see (Castano
et al., 2010, 2009).

3.3 Three level architecture

As previously stated, every dataset is (independently) represented on three levels – data, semantic and
abstract level (see Figure 3). Bottommost data level holds data in a pure related format (i.e. networks), mainly
to facilitate state-of-the-art related data algorithms for matching. Next level, semantic level, enriches data
with semantics (i.e. ontologies), to further enhance matching and to promote semantic merging execution.
Data on both levels represent entities of topmost abstract level, which serves merely as an abstract (artificial)
representation of all the entities, used during matching and merging execution.

The information captured by data level is a subset of that of semantic level. Similarly, the information
captured by semantic level is a subset of that of abstract level. This information-based view of the architecture
is seen in Figure 3 a). However, representation on each level is completely independent from the others, due
to absolute separation of data. This provides an alternative data-based view, seen in Figure 3 b).

To manage data and semantic level independently (or jointly), a mapping between the levels is required. In
practice, data source could provide datasets on both, data and semantic level. The mapping is in that case
trivial (i.e. given). However, more commonly, data source would only provide datasets on one of the levels,
and the other has to be inferred.

Let (N,AN ) be a dataset, represented as a network on data level. Without loss for generality, we assume
that N is an undirected network. Inferred ontology (ẼÕ, ÃÕ) on semantic level is defined with

ẼC = {vertex, edge} (8)

ẼI = VN ∪ EN (9)

ẼR = {isOf, isIn} (10)
1Resource Description Framework Schema
2Web Ontology Language
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ẼA = {AVN
, AEN

} (11)

and

ÃÕ = {v isOf vertex | v ∈ VN}
∪ {e isOf edge | e ∈ EN}
∪ {v isIn e | v ∈ VN ∧ e ∈ EN ∧ v ∈ e}
∪ {v.AVN

= a | v ∈ VN ∧AVN
(v) = a}

∪ {e.AEN
= a | e ∈ EN ∧AEN

(e) = a}

(12)

We denote IN : (N,AN ) 7→ (ẼÕ, ÃÕ). One can easily see that I−1
N ◦ IN is an identity (transformation

preserves all the information).

On the other hand, given a dataset (EO, AO), represented with an ontology on semantic level, inferred
(undirected) network (Ñ , ÃÑ ) on data level is defined with

ṼÑ = EO ∩ EI (13)

ẼÑ = {Ea
O ∩ EI | a ∈ AO ∧ Ea

O ⊆ EO} (14)

and

ÃṼÑ
: ṼÑ → EC × EA (15)

ÃẼÑ
: ẼÑ → ER (16)

Instances of ontology are represented with the vertices of the network, and axioms with its edges. Classes
and related data are, together with the attributes, expressed through vertex, edge attribute functions.

We denote IO : (EO, AO) 7→ (Ñ , ÃÑ ). Transformation IO discards purely semantic information (e.g. related
data between classes), as it cannot be represented on the data level. Thus IO cannot be inverted as IN .
However, all the data, and data related information, is preserved (e.g. individuals, classes and related data
among individuals).

Due to limitations of networks, only axioms, relating at most two individuals in EO, can be represented with
the set of edges ẼÑ (see Equation (14)). When this is not sufficient, hypernetworks (or hypergraphs3) should
be employed instead. Nevertheless, networks should suffice in most cases.

One more issue has to be stressed. Although IN and IO give a “common” representation of every dataset,
the transformations are completely different. For instance, presume (N,AN ) and (EO, AO) are (given)
representations of the same dataset. Then IN (N,AN ) 6= (EO, AO) and IO(EO, AO) 6= (N,AN ) in general –
inferred ontology, network does not equal given ontology, network respectively. The former non-equation
resides in the fact that network (N,AN ) contains no knowledge of the (pure) semantics within ontology
(EO, AO); and the latter resides in the fact that IO has no information of the exact representation used for
(N,AN ). Still, transformations IN and IO can be used to manage data on a common basis.

Last, we discuss three key issues regarding an adequate data architecture, presented in Section 3. Firstly, due
to variety of different data formats, a mutual representation must be employed. As the data on both data
and semantic level is represented in the form of knowledge chunks (see Section 3.2), every piece of data is

3Hypergraphs are graphs, where edges can connect multiple vertices.
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stored in exactly the same way. This allows for common algorithms of matching and merging and makes the
data easily manageable.

Furthermore, introduction of knowledge chunks naturally deals also with missing data. As each chunk is
actually a set of attribute-value pairs, missing data only results in smaller chunks. Alternatively, missing data
could be randomly inputted from the rest and treated as extremely uncertain or mistrustful (see Section 4).

Secondly, semantical component of data should be addressed properly. Proposed architecture allows simple
(related) data and also semantically enriched data. Hence no information is discarded. Moreover, appropriate
transformations make all data accessible on both data and semantic level, providing for specific needs of each
algorithm.

Thirdly, architecture should deal with (partially) missing and uncertain or mistrustful data, which is thoroughly
discussed in the following section.

4 Trust and trust management

When merging data from different sources, these are often of different origin and thus their trustworthiness (or
accuracy) can be questionable. For instance, personal data of participants in a traffic accident is usually more
accurate in the police record of the accident, then inside participants’ social network profiles. Nevertheless,
an attribute from less trusted data source can still be more accurate than an attribute from more trusted one
– a related status (e.g. single or married) in the record may be outdated, while such type of information is
inside the social network profiles quite often up-to-date.

A complete solution for matching and merging execution should address such problems as well. A common
approach for dealing with data sources that provide untrustworthy or conflicting statements, is the use of
trust management (systems). These are, alongside the concept of trust, both further discussed in sections 4.1
and 4.2.

4.1 Definition of trust

Trust is a complex psychological-sociological phenomenon. Despite of, people use term trust in everyday life
widely, and with very different meanings. Most common definition states that trust is an assured reliance on
the character, ability, strength, or truth of someone or something.

In the context of computer networks, trust is modeled as a related data between entities. Formally, we define
a trust related data as

ωE : E × E → ΣE (17)

where E is a set of entities and ΣE a set of all possible, numerical or descriptive, trust values. ωE thus
represents one entity’s attitude towards another and is used to model trust(worthiness) of all entities in
E. To this end, different trust modeling methodologies and systems can be employed, from qualitative to
quantitative (e.g. (Nagy et al., 2008; Richardson et al., 2003; Trček, 2009)).

We introduce trust on three different levels. First, we define trust on the level of data source, in order to
represent trustworthiness of the source in general. Let S be the set of all data sources. Their trust is defined
as TS : S → [0, 1], where higher values of TS represent more trustworthy source.

Second, we define trust on the level of attributes (or semantically related data) within the knowledge chunks.
The trust in attributes is naturally dependent on the data source of origin, and is defined as TAs : As → [0, 1],
where As is the set of attributes for data source s ∈ S. As before, higher values of TAs represent more
trustworthy attribute.
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Last, we define trust on the level of knowledge chunks. Despite the trustworthiness of data source and
attributes within some knowledge chunk, its data can be (semantically) corrupted, missing or otherwise
unreliable. This information is captured using trustworthiness of knowledge chunks, and again defined as
TK : K → [0, 1], where K is a set of all knowledge chunks. Although the trust related data (see Equation
(17)), needed for the evaluation of trustworthiness of data sources and attributes, are (mainly) defined by the
user, computation of trust in knowledge chunks can be fully automated using proper evaluation function (see
Section 4.2).

Three levels of trust provide high flexibility during matching and merging. For instance, attributes from
more trusted data sources are generally favored over those from less trusted ones. However, by properly
assigning trust in attributes, certain attributes from else less trusted data sources can prevail. Moreover,
trust in knowledge chunks can also assist in revealing corrupted, and thus questionable, chunks that should
be excluded from further execution.

Finally, we define trust in some particular value within a knowledge chunk, denoted trust value T . This is
the value in fact used during merging and matching execution and is computed from corresponding trusts on
all three levels. In general, T can be an arbitrary function of TS , TAs

and TK . Assuming independence, we
calculate trust value by concatenating corresponding trusts

T = TS ◦ TAs
◦ TK (18)

Concatenation function ◦ could be a simple multiplication or some fuzzy logic operation (trusts should in
this case be defined as fuzzy sets).

4.2 Trust management

During merging and matching execution, trust values are computed using trust management algorithm based
on (Richardson et al., 2003). We begin by assigning trust values TS , TAs for each data source, attribute
respectively (we actually assign trust related data). Commonly, only a subset of values must necessarily be
assigned, as others can be inferred or estimated from the first. Next, trust values for each knowledge chunk
are not defined by the user, but are calculated using the chunk evaluation function feval (i.e. TK = feval).

An example of such function is a density of inconsistencies within some knowledge chunk. For instance, when
attributes Birth and Age of some particular knowledge chunk mismatch, this can be seen as an inconsistency.
However, one must also consider the trust of the corresponding attributes (and data sources), as only
inconsistencies among trustworthy attributes should be considered. Formally, density of inconsistencies is
defined as

feval(k) = N̂inc(k)−Ninc(k)
N̂inc(k)

, (19)

where k is a knowledge chunk, k ∈ K, Ninc(k) the number of inconsistencies within k and N̂inc(k) the number
of all possible inconsistencies.

Finally, after all individual trusts TS , TAs and TK have been assigned, trust values T are computed using
equation (18). When merging takes place and two or more data sources (or knowledge chunks) provide
conflicting attribute values, corresponding to the same (resolved) entity, trust values T are used to determine
actual attribute value in the resulting data source (or knowledge chunk). For further discussion on trust
management during matching and merging see Section 5.
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Figure 4: Characterization of merging and matching execution defining one context in user dimension, two
contexts in data dimension and all contexts in trust dimension

5 Matching and merging data sources

Merging data from heterogeneous sources can be seen as a two-step process. The first step resolves the real
world entities of abstract level, described by the data on lower levels, and constructs a mapping between the
levels. This mapping is used in the second step that actually merges the datasets at hand. We denote these
subsequent steps as entity resolution (i.e. matching) and redundancy elimination (i.e. merging).

Matching and merging is employed in various scenarios. As the specific needs of each scenario vary, different
dimensions of variability characterize every matching and merging execution. These dimensions are managed
through the use of contexts (Castano et al., 2010; Lapouchnian and Mylopoulos, 2009). Contexts allow a
formal definition of specific needs arising in diverse scenarios and a joint control over various dimensions of
matching and merging execution.

The following section discusses the notion of contexts more thoroughly and introduces different types of
contexts used. Next, sections 5.2 and 5.3 describe employed entity resolution and redundancy elimination
algorithms respectively. The general framework for matching and merging is presented and formalized in
Section 5.4, and discussed in Section 7.

5.1 Contexts

Every matching and merging execution is characterized by different dimensions of variability of the data,
and mappings between. Contexts are a formal representation of all possible operations in these dimensions,
providing for specific needs of each scenario. Every execution is thus characterized with the contexts it defines
(see Figure 4), and can be managed and controlled through their use.

The idea of contexts originates in the field of requirements engineering, where it has been applied to model
domain variability (Lapouchnian and Mylopoulos, 2009). It has just recently been proposed to model also
variability of the matching execution (Castano et al., 2010). Our work goes one step further as it introduces
contexts, not bounded only to user or scenario specific dimensions, but also data related and trust contexts.

Formally, we define a context C as

C : D → {true, false}, (20)

where D can be any simple or composite domain. A context simply limits all possible values, attributes,
related data, knowledge chunks, datasets, sources or other, that are considered in different parts of matching
and merging execution. Despite its simple definition, a context can be a complex function. It is defined on
any of the architecture levels, preferably on all. Let CA, CS and CD represent the same context on abstract,
semantic and data level respectively. The joint context is defined as
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CJ = CA ∧ CS ∧ CD (21)

In the case of missing data (or contexts), only appropriate contexts are considered. Alternatively, contexts
could be defined as fuzzy sets, to address also the noisiness of data. In that case, a fuzzy AND operation
should be used to derive joint context CJ .

We distinguish between three types of contexts due to different dimensions characterized (see Figure 4).

• User or scenario specific contexts are used mainly to limit the data and control the execution. This
type coincides with dimensions identified in (Castano et al., 2010). An example of user context is a
simple selection or projection of the data.

• Data related contexts arise from dealing with related or semantic data, and various formats of data.
Missing or corrupted data can also be managed through the use of these contexts.

• Trust and data uncertainty contexts provide for an adequate trust management and efficient security
assurance between and during different phases of execution. An example of trust context is a definition
of required level of trustworthiness of data or sources.

Detailed description of each context is out of scope of this paper. For more details on (user) contexts see
(Castano et al., 2010).

5.2 Entity resolution

First step of matching and merging execution is to resolve the real world entities on abstract level, described by
the data on lower levels. Thus a mapping between the levels (entities) is constructed and used in consequent
merging execution. Recent literature proposes several state-of-the-art approaches for entity resolution (e.g.
(Ananthakrishna et al., 2002; Bhattacharya and Getoor, 2004, 2007; Dong et al., 2005; Kalashnikov and
Mehrotra, 2006). A naive approach is a simple pairwise comparison of attribute values among different
entities. Although, such an approach could already be sufficient for flat data, this is not the case for network
data, as the approach completely discards related data between the entities. For instance, when two entities
are related to similar entities, they are more likely to represent the same entity. However, only the attributes
of the related entities are compared, thus the approach still discards the information if related entities resolve
to the same entities – entities are even more likely to represent the same entities when their related entities
resolve to, not only similar, but the same entities. An approach that uses this information, and thus resolves
entities altogether (in a collective fashion), is denoted collective (related) entity resolution algorithm.

We employ a state-of-the-art (collective) related data clustering algorithm proposed in (Bhattacharya and
Getoor, 2007). To further enhance the performance, algorithm is semantically elevated and adapted to allow
for proper and efficient trust management.

The algorithm 5.1 is actually a greedy agglomerative clustering. Entities (on lower levels) are represented
as a group of clusters C, where each cluster represents a set of entities that resolve to the same entity on
abstract level. At the beginning, each (lower level) entity resides in a separate cluster. Then, at each step, the
algorithm merges two clusters in C that are most likely to represent the same entity (most similar clusters).
When the algorithm unfolds, C holds a mapping between the entities on each level (i.e. maps entities on
lower levels through the entities on abstract level).

During the algorithm, similarity of clusters is computed using a joint similarity measure (see Equation (28)),
combining attribute, related data and semantic similarity. First is a basic pairwise comparison of attribute
values, second introduces related information into the computation of similarity (in a collective fashion),
while third represents semantic elevation of the algorithm.

Let ci, cj ∈ C be two clusters of entities. Using knowledge chunk representation, attribute cluster similarity
is defined as
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simA(ci, cj) =
∑

ki,j∈ci,j∧a∈ki,j

trust(ki.a, kj .a)simA(ki.a, kj .a), (22)

where ki,j ∈ K are knowledge chunks, a ∈ As is an attribute and simA(ki.a, kj .a) similarity between two
attribute values. (Attribute) similarity between two clusters is thus defined as a weighted sum of similarities
between each pair of values in each knowledge chunk. Weights are assigned due to trustworthiness of values –
trust in values ki.a and kj .a is computed using

trust(ki.a, kj .a) = min{T (ki.a), T (kj .a)} (23)

Hence, when even one of the values is uncertain or mistrustful, similarity is penalized appropriately, to prevent
matching based on (likely) incorrect information.

For computation of similarity between actual attribute values simA(ki.a, kj .a) (see Equation (22)), different
measures have been proposed. Levenshtein distance (Levenshtein, 1966) measures edit distance between two
strings – number of insertions, deletions and replacements that traverse one string into the other. Another
class of similarity measures are TF-IDF4-based measures (e.g. Cos TF-IDF and Soft TF-IDF (Cohen et al.,
2003; Moreau et al., 2008)). They treat attribute values as a bag of words, thus the order of words in
the attribute has no impact on the similarity. Other attribute measures are also Jaro (Jaro, 1989) and
Jaro-Winkler (Winkler, 1990) that count number of matching characters between the attributes.

Different similarity measures prefer different types of attributes. TF-IDF -based measures work best with
longer strings (e.g. descriptions), when other prefer shorter strings (e.g. names). For numerical attributes,
an alternative measure has to be employed (e.g. simple evaluation, followed by a numerical comparison).
Therefore, when computing attribute similarity for a pair of clusters, different attribute measures are used
with different attributes (see Equation (22)).

Using data level representation, we define a neighborhood for vertex v ∈ VN as

nbr(v) = {vn| vn ∈ VN ∧ {v, vn} ∈ EN} (24)

and cluster c ∈ C as

nbr(c) = {cn| cn ∈ C ∧ v ∈ c ∧ cn ∩ nbr(v) 6= ∅}. (25)

Neighborhood of a vertex is defined as a set of connected vertices. Similarly, neighborhood of a cluster is
defined as a set of clusters, connected through the vertices within.

For a (collective) related similarity measure, we adapt a Jaccard coefficient (Bhattacharya and Getoor, 2007)
measure for trust-aware (related) data. Jaccard coefficient is based on Jaccard index and measures the number
of common neighbors of two clusters, considering also the size of the clusters’ neighborhoods – when the size
of neighborhoods is large, the probability of common neighbors increases. We define

simR(ci, cj) =
∑

cn∈nbr(ci)∩nbr(cj) trust(eT
in, e

T
jn)

|nbr(ci) ∪ nbr(cj)| (26)

where eT
in, e

T
jn is the most trustworthy edge connecting vertices in cn and ci, cj respectively (for the computation

of trust(eT
in, e

T
jn), a knowledge chunk representation of eT

in, e
T
jn is used). (Related data) similarity between two

clusters is defined as the size of a common neighborhood (considering also the trustworthiness of connecting
related data), decreased due to the size of clusters’ neighborhoods. Entities related to a relatively large set of
entities that resolve to the same entities on abstract level, are thus considered to be similar.

4Term Frequency-Inverse Document Frequency
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Alternatively, one could use some other similarity measure like Adar-Adamic similarity (Adamic and Adar,
2001), random walk measures, or measures considering also the ambiguity of attributes or higher order
neighborhoods (Bhattacharya and Getoor, 2007).

For the computation of the last, semantic, similarity, we propose a random walk like approach. Using a
semantic level representation of clusters ci, cj ∈ C, we do a number of random assumptions (queries) over
underlying ontologies. Let Nass be the number of times the consequences (results) of the assumptions made
matched, Ñass number of times the consequences were undefined (for at least one ontology) and N̂ass the
number of all assumptions made. Furthermore, let NT

ass be the trustworthiness of ontology elements used for
reasoning in assumptions that matched (computed as a sum of products of trusts on the paths of reasoning,
similar as in Equation (23)). Semantic similarity is then defined as

simS(ci, cj) = NT
ass(ci, cj)

N̂ass(ci, cj)− Ñass(ci, cj)
. (27)

Similarity represents the trust in the number of times ontologies produced the same consequences, not
considering assumptions that were undefined for some ontology. As the expressiveness of different ontologies
vary, and some of them are even inferred from network data, many of the assumptions could be undefined for
some ontology. Still, for N̂ass(ci, cj)− Ñass(ci, cj) large enough, Equation (27) gives a good approximation of
semantic similarity.

Using attribute, related and semantic similarity (see Equations (22), (26) and (27)) we define a joint similarity
for two clusters as

sim(ci, cj) = δAsimA(ci, cj) + δRsimR(ci, cj) + δSsimS(ci, cj)
δA + δR + δS

, (28)

where δA, δR and δS are weights, set due to the scale of related and semantical information within the data.
For instance, setting δR = δS = 0 reduces the algorithm to a naive pairwise comparison of attribute values,
which should be used when no related or semantic information is present.

13



Definition 5.1 (Collective entity resolution).

01 : Initialize clusters as C = {{k}| k ∈ K}
02 : Initialize priority queue as Q = ∅
03 : for ci, cj ∈ C and sim(ci, cj) ≥ θS

04 : Q.insert(sim(ci, cj), ci, cj)
05 : end for
06 : while Q 6= ∅ do
07 : (sim(ci, cj), ci, cj)← Q.pop() // Most similar
08 : if sim(ci, cj) < θS then
09 : return C

10 : end if
11 : C ← C − {ci, cj} ∪ {ci ∪ cj} // Matching
12 : for (sim(cx, ck), cx, ck) ∈ Q and x ∈ {i, j} do
13 : Q.remove(sim(cx, ck), cx, ck)
14 : end for
15 : for ck ∈ C and sim(ci ∪ cj , ck) ≥ θS

16 : Q.insert(sim(ci ∪ cj , ck), ci ∪ cj , ck)
17 : end for
18 : for cn ∈ nbr(ci ∪ cj)
19 : for ck ∈ C and sim(cn, ck) ≥ θS

20 : Q.insert(sim(cn, ck), cn, ck) // Or update
21 : end for
22 : end for
23 : end while
24 : return C

Finally, we present the collective entity resolution algorithm 5.1. First, the algorithm initializes clusters C and
priority queue of similarities Q, considering the current set of clusters (lines 1− 5). Each cluster represents
at most one entity as it is composed out of a single knowledge chunk. Algorithm then, at each iteration,
retrieves currently the most similar clusters and merges them (i.e. matching of resolved entities), when their
similarity is greater than threshold θS (lines 7− 11). As clusters are stored in the form of knowledge chunks,
matching in line 11 results in a simple concatenation of chunks. Next, lines 12− 17 update similarities in the
priority queue Q, and lines 18− 22 insert (or update) also neighbors’ similarities (required due to related
similarity measure). When the algorithm terminates, clusters C represent chunks of data resolved to the
same entity on abstract level. This mapping between the entities (i.e. their knowledge chunk representations)
is used to merge the data in the next step.

Threshold θS represents minimum similarity for two clusters that are considered to represent the same entities.
Optimal value should be estimated from the data.

Three more aspects of the algorithm ought to be discussed. Firstly, pairwise comparison of all clusters
during the execution of the algorithm is computationally expensive, specially in early stages of the algorithm.
Authors in (Bhattacharya and Getoor, 2007) propose an approach in which they initially find groups of chunks
that could possibly resolve to the same entity. In this way, the number of comparisons can be significantly
decreased.

Secondly, due to the nature of (collective) related similarity measures, they are ineffective when none of the
entities has already been resolved (e.g. in early stages of the algorithm). As the measure in Equation (26)
counts the number of common neighbors, this always evaluates to 0 in early stages (in general). Thus relative

14



similarity measures should be used after the algorithm has already resolved some of the entities, using only
attribute and semantic similarities.

Thirdly, in the algorithm we implicitly assumed that all attributes, (semantic) related data and other, have
the same names or identifiers in every dataset (or knowledge chunk). Although, we can probably assume that
all attributes within datasets, produced by the same source, have same and unique names, this cannot be
generalized.

We propose a simple, yet effective, solution. The problem at hand could be denoted attribute resolution, as
we merely wish to map attributes between the datasets. Thus we can use the approach proposed for entity
resolution. Entities are in this case attributes that are compared due to their names, and also due to different
values they hold; and related data between entities (attributes) represent co-occurrence in the knowledge
chunks. As certain attributes commonly occur with some other attributes, this would further improve the
resolution.

Another possible improvement is to address also the attribute values in a similar manner. As different values
can represent the same underlying value, value resolution, done prior to attribute resolution, can even further
improve the performance.

5.3 Redundancy elimination

After the entities, residing in the data, have been resolved (see Section 5.2), the next step is to eliminate
the redundancy and merge the datasets at hand. This process is somewhat straightforward as all data is
represented in the form of knowledge chunks. Thus we merely need to merge the knowledge chunks, resolved
to the same entity on abstract level. Redundancy elimination is done entirely on semantic level, to preserve
all the knowledge inside the data.

When knowledge chunks hold disjoint data (i.e. attributes), they can simply be concatenated together.
However, commonly various chunks would provide values for the same attribute and, when these values are
inconsistent, they need to be handled appropriately. A naive approach would count only the number of
occurrences of some value, when we consider also their trustworthiness, to determine the most probable value
for each attribute.

Let c ∈ C be a cluster representing some entity on abstract level (resolved in the previous step), let
k1, k2 . . . kn ∈ c be its knowledge chunks and let kc be the merged knowledge chunk, we wish to obtain.
Furthermore, for some attribute a ∈ A·, let Xa be a random variable measuring the true value of a and let
Xa

i be the random variables for a in each knowledge chunk it occurs (i.e. ki.a). Value of attribute a for the
merged knowledge chunk kc is then defined as

arg max
v

P (Xa = v|
∧

i

Xa
i = ki.a). (29)

Each attribute is thus assigned the most probable value, given the evidence observed (i.e. values ki.a). By
assuming pair-wise independence among Xa

i (conditional on Xa) and uniform distribution of Xa equation
(29) simplifies to

arg max
v

∏
i

P (Xa
i = ki.a|Xa = v). (30)

Finally, conditional probabilities in equation (30) are approximated with trustworthiness of values,

P (Xa
i |Xa) ≈

{
T (ki.a) for ki.a = v,

1− T (ki.a) for ki.a 6= v
(31)

hence
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Figure 5: Entity resolution and redundancy elimination on three knowledge chunks (see Section 3.2). a) Input
data in a form of ontology (see Figure 2), network and attribute values. b) Cluster network obtained with
entity resolution (i.e. matching). c) Final ontology obtained after redundancy elimination and appropriate
postprocessing.
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kc.a = arg max
v

∏
ki.a=v

T (ki.a)
∏

ki.a6=v

1− T (ki.a). (32)

Only knowledge chunks (see section 3.2) containing attribute a are considered.

In the following we present the proposed redundancy elimination algorithm 5.2.
Definition 5.2 (Redundancy elimination).

1 : Initialize knowledge chunks KC

2 : for c ∈ C and a ∈ A· do

3 : kc.a = arg maxv

∏
k∈c∧k.a=v

T (k.a)
∏

k∈c∧k.a 6=v

1− T (k.a)

4 : end for
5 : return KC

The algorithm uses knowledge chunk representation of semantic level. First, it initializes merged knowledge
chunks kc ∈ KC . Then, for each attribute kc.a, it finds the most probable value among all given knowledge
chunks (line 3). When the algorithm unfolds, knowledge chunks KC represent a merged dataset, with resolved
entities and eliminated redundancy. Each knowledge chunk kc corresponds to unique entity on abstract level,
and each attribute holds the most trustworthy value.

At the end, only the data that was actually provided by some data source, should be preserved. Thus all
inferred data (through IN or IO; see section 3.3) is discarded, as it is merely an artificial representation
needed for (common) entity resolution and redundancy elimination. Still, all provided data and semantical
information is preserved and properly merged with the rest. Hence, although redundancy elimination is done
on semantic level, resulting dataset is given on both data and semantic level (that complement each other).

Last, we discuss the assumptions of independence among Xa
i and uniform distribution of Xa. Clearly, both

assumptions are violated, still the former must be made in order for the computation of most probable value
to be feasible. However, the latter can be eliminated when distribution of Xa can be approximated from
some large-enough dataset.

5.4 General framework

Proposed entity resolution and redundancy elimination algorithms (see sections 5.2 and 5.3) are integrated
into a general framework for matching and merging (see Figure 6). Framework represents a complete solution,
allowing a joint control over various dimensions of matching and merging execution. Each component of the
framework is briefly presented in the following, and further discussed in section 7.

Initially, data from various sources is preprocessed appropriately. Every network or ontology is transformed
into a knowledge chunk representation and, when needed, also inferred on an absent architecture level (see
section 3.3). After preprocessing is done, all data is represented in the same, easily manageable, form, allowing
for common, semantically elevated, subsequent analyses.

Prior to entity resolution, attribute resolution is done (see section 5.2). The process resolves and matches
attributes in the heterogeneous datasets, using the same algorithm as for entity resolution. As all data is
represented in the form of knowledge chunks, this actually unifies all the underlying networks and ontologies.

Next, proposed entity resolution and redundancy elimination algorithms are employed (see sections 5.2 and
5.3). The process thus first resolves entities in the data, and then uses this information to eliminate the
redundancy and to merge the datasets at hand. Algorithms explore not only the related data, but also the
semantics behind it, to further improve the performance.

Last, postprocessing is done, in order to discard all artificially inferred data and to translate knowledge
chunks back to the original network or ontology representation (see section 3). Throughout the entire

17



Figure 6: General framework for matching and merging data from heterogeneous sources.

execution, components are jointly controlled through (defined) user, data and trust contexts (see section
5.1). Furthermore, contexts also manage the results of the algorithms, to account for specific needs of each
scenario.

Every component of the framework is further enhanced, to allow for proper trust management, and thus also
for efficient security assurance. In particular, all the similarity measures for entity resolution are trust-aware,
moreover, trust is even used as a primary evidence in the redundancy elimination algorithm. The introduction
of trust-aware and security-aware algorithms represents the main novelty of the proposition.

6 Experiments

In the following subsections we demonstrate the framework’s (see Figure 6) most important parts on several
real-world datasets, designed for entity resolution tasks and discuss the results. The part of attribute
resolution and redundancy elimination evaluation is shown like a case study because to our knowledge, no
tagged data combining all results we need, exists.

The demonstration is done with respect to semantic elevation, semantic similarity and trust management
contexts (see section 5.1). We do not fit methods for the datasets to achieve superior performance, but rather
focus on the increase of accuracy when using each of the contexts. In the following we present the datasets,
explain used metrics, show the results and discuss them. The used datasets and full source code is publicly
available5.

6.1 Datasets

We consider five testbeds of four different domains to simulate real-life matching tasks. Each data source
introduces many data quality problems, in particular duplicate references, heterogeneous representations,
misspellings or extraction errors.

The CiteSeer dataset used is a cleaned version6 from Getoor L. et. al. (Bhattacharya and Getoor, 2007),
others were presented and evaluated against entity resolution algorithms by Köpcke et al. (2010)7.

• CiteSeer dataset contains 1, 504 machine learning documents with 2, 892 author references to 1, 165
author entities. The only attribute information available is name for authors and title for documents.

5http://zitnik.si/mediawiki/index.php?title=Software
6http://www.cs.umd.edu/projects/linqs/projects/er/DATA/citeseer.dat
7http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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Table 1: Attribute names, used to test attribute resolution approaches on DBLP-ACM dataset
Attribute names

id #1 #2 #3 #4
1 title venue year authors
2 titl venue year author
3 title venue yr writers
4 attr1 attr2 attr3 attr4

• DBLP-ACM dataset consists of two well-structured bibliographic data sources from DBLP and ACM
with 2616 and 2294 references to 2224 document entities. Each reference contains values for title,
authors, venue and publication year of respective scientific paper.

• Restaurants dataset contains 864 references to 754 restaurant entities. Most of the references contain
values for name, address, city, phone number and type of certain restaurant.

• AbtBuy is an e-commerce dataset with extracted data from Abt.com and Buy.com. They contain
1, 081 and 1, 092 references to 1097 different products. Each product reference is mostly represented by
product name, manufacturer and often missing description and price values.

• Affiliations dataset consists of 2, 260 references to 331 organizations. The only attribute value per
record is an organization name, which can be written in many possible ways (i.e. full, part name or
abbreviation).

6.2 Attribute resolution

As a part of semantic elevation, the input datasets must be aligned by attribute-value pairs to achieve a
mutual representation. As mentioned in section 5.2, an entity resolution algorithm could be used to merge
appropriate attributes. To better solve the problem in general, we propose the following similarity functions:

• ExactMatch: The simplest version. Attribute names must match exactly.
• SimilarityMatch: Every two attributes with score above the selected threshold, are matched (We use

Jaro-Winkler (Winkler, 1990) metric with threshold of 0.95). This is typical pairwise entity resolution
approach.

• SimilarityMatch+: In addition to previous function, it considers synonyms when comparing two
attribute names (synsets from semantic lexicon Wordnet (Miller, 1995) are used). Real-life datasets
along with attribute names are created by people and that is why attributes over different datasets are
supposed to be synonyms.

• DomainMatch: Same attribute values contain similar data format. Leveraging this information we
extract selected features and match the most similar attributes across datasets. (A simple example is
calculating the average number of words per attribute values.)

• OntologyMatch: Using ontologies, additional semantic information is included. If all input datasets
are semantically described using ontologies, related data types sameAs or seeAlso, possible hierarchy
of subclasses, included rules and axioms can be additionally used for matching. When none of this
apply, previous procedures must be employed.

As our datasets mostly consist of 2 different already aligned sources, we have chosen some additional attribute
names for DBLP-ACM dataset manually. Altered values are shown in Table 1. Due to space limitations,
we just presentively discuss the results. First line are the original attribute names and next three lines
are changed to show success of proposed matchers. Pair (1, 2) is successfully solved by SimilarityMatch.
The difference between values is limited to misspellings and small writing errors. Pair (1, 3) is a bit more
difficult. Values authors and writers or year and yr cannot be matched by similarity. As they are synonyms,
SimilarityMatch+ can match them. Pair (1, 4) values are completely different and it is completely useless to
check name pairs. The DomainMatch technique correctly matches the attributes by considering attribute
values format.
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Figure 7: Comparison of entity resolution results after bootstrapping according to similarity alpha.

6.3 Entity resolution

In this section we first discuss the selected entity resolution algorithm and then show the increase in correctly
matched values using semantic similarity. We implemented the algorithm, proposed in (Bhattacharya and
Getoor, 2007), which is well described in section 5.2 and presented as algorithm 5.2.

In addition to the standard blocking techniques of partially string matching we added similarity, n-gram
blocking and also enabled the option of fuzzy blocking. Standard approach is used on AbtBuy, CiteSeer
and DBLP-ACM datasets. Similarity blocking adds an instance to a block if the similarity score with the
representative reference of the block is above the defined threshold. This type of blocking was used with the
Restaurants dataset using 0.3 threshold for name and 0.7 for phone attribute. At Affiliations dataset we use
n-gram blocking with at least 4 6-gram matches.

We use secondstring (Cohen et al., 2003) library for all basic similarity measures implementations. At
bootstrapping and clustering we use JaroWinkler with TFIDF and manual weights as an attribute metric.
Promising general results were achieved also using n-gram and Level2JaroWinkler metric. As a related simi-
larity we use k-Neighbours at bootstrapping and modified JaccardCoefficient at clustering. The modification
just aligns the match result x using function f(x) = −(−x + 1)10 + 1, because similarity pairs instead of
typical sets are checked.

The most important parameters that need to be selected are similarity alpha α and merge threshold θS . Both
values were selected subjectively and not dataset - specific. We set similarity alpha to α = 0.85, which results
in weighting attribute metric to δA = α and related data metric to δR = 1− α. Matching accuracy using
different similarity alphas is shown on Figure 7. As it can be seen from the figure, some datasets contain a
lot of disambiguate values, which results in very low F-score at α set to 1.

Merge threshold in our solution is set to 0.95. Testing the threshold at different values after bootstrapping is
presented on Figure 8 and after clustering on Figure 9. It is possible to see the effect of iterative matching
and related data metric from the Figure 9, which improves the final results. During testing these parameters,
no semantic measure was used yet.

Due to optimization, our implementation updates or possibly inserts only neighbour pairs of matched clusters
into priority queue during clustering. The accuracy when checking only neighbours remains unchanged.
Therefore the cluster ck ∈ nbr(ci ∪ cj) at the 19th line of algorithm 5.1).

On Figures 10 and 11 we present the increase of success in matching using semantic similarity (see Equation
(27)). We set semantic similarity weight δs to 4 based on some preliminary experiments. Getoor et. al.
(Bhattacharya and Getoor, 2007) adjusted Adar (Adamic and Adar, 2001) similarity metric to better support
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Figure 8: Comparison of entity resolution results after bootstrapping according to θS merge threshold.

Figure 9: Comparison of entity resolution results after clustering according to θS merge threshold.
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Figure 10: Comparison of entity resolution results after bootstrapping without and with using semantic
similarity.

values (e.g. author names) disambiguation. It learns an ambiguity function after checking the whole set
of values in the dataset, similar to TF-IDF approach. This metric better models names, but does not use
semantics, like identifying first or last name, product codes or specific parts of given value. Semantic similarity
should model the human reasoning whether to match two values or not. For better understanding the meaning
of semantic similarity, we present few examples, used in the experiment:

• Name metric: This is our the most general similarity metric. It models typical value matching by
splitting it into tokens, identifying the value with less information and comparing it to other value’s
tokens by startWith or similarity metric. It also checks and matches abbreviations. For example,
every pair of names “William Cohen”, “W. Cohen”, “W.W. Cohen” or “Cohen” must have maximum
semantic similarity. Similar applies to “Arizona State Univ., Tempe, AZ”, “Arizona State University”
and “Arizona State University, Arizona” where using string similarity metric yields low values. Name
metric is used for organization name matching on Affilation dataset, author name matching on CiteSeer
and phone and restaurant name matching on Restaurants dataset.

• Number metric: Number metric identifies numeric values and matches them according to difference
in values. It is used on DBLP-ACM dataset at publication year matching.

• Product metric: Product metric is designed to match products, which sometimes contain serial
numbers or codes. These codes are commonly represented as a sequence of numbers and/or letters. In
addition to code matching, it integrates Name metric with minimum k token match score. An example
of matching two products is “Toshiba 40’ Black Flat Panel LCD HDTV - 40RV525U” and “Toshiba
40RV525U - 40’ Widescreen 1080p LCD HDTV w/ Cinespeed - Piano Black” where it is very hard
to identity pair without code detection. Product metric is used on AbtBuy dataset for product name
matching.

• Restaurant metric: This metric is specific to Restaurants dataset. It supposes attributes name and
phone or location are scored above the threshold to match.

• Title metric: Titles are sometimes shrinked, have some words replaced with synonyms or refer to
papers, written in more parts. This metric improves matching titles on DBLP-ACM dataset.

The results on Figures 10 and 11 show the increase of matching accuracy by employing semantic similarity
measure. The results on AbtBuy dataset are increased by 11% after clustering. Recall is significantly higher,
but precision falls down. It is interesting that using semantics, same result is achieved immediately after
bootstrapping, which shows good work at blocking. On Affiliations, the precision lowers, but employing
semantics, more organizations with different name representations are resolved. CiteSeer gains more than
10% in recall and F-score and also keeps all measures above 90%. At DBLP-ACM dataset, the differences are
not very significant, but use of semantics still shows minor improvements. After bootstrapping at CiteSeer
dataset it is interesting semantic similarity helps achieving 100% precision and a little improves the final
result.
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Figure 11: Comparison of entity resolution results after clustering without and with using semantic similarity.

Experimenting using only semantic similarity metric gave worse results than including also attribute one.
This is because our semantic similarities focus on semantics and not on misspelled or disambiguated data on
lexical level. Restaurant dataset for example contains examples unsolvable even for a man without background
knowledge. In the case of AbtBuy dataset even more knowledge would not work as name and product
description is too general to match on some examples. Number match metric could be applied also on it, but
one of the datasets barely contains a product’s price.

6.4 Redundancy elimination

The last step before postprocessing is merging knowledge chunks matched in clusters at entity resolution.

Merging is done entirely using trust management. In section 4 we define trust on levels of data source, knowl-
edge chunk and value. As trust cannot be easily initialized, we select the appropriate cluster representative
using trust of value only. Therefore we implemented the calculation of trust value for algorithm 5.2 in the
following ways:

• Random: Random value is selected as the representative.
• Naive: Value that occurs the most time is selected as the representative.
• Naive+: The representative is selected as the maximum similar value to all others. Let c be a cluster

of matched values, k value in cluster and Sim appropriate similarity function. Then the value is selected
according to Equation (33). As similarity function we use Jaro-Winkler.

Representative(c) = arg maxv

∑
k∈c∧k 6=v

Sim(k, v) (33)

• Trust: Intuitively, a value is trustworthy if it yields many search results on the internet. This is not
exactly true as for example the number of search results for “A. N.” is much higher comparing to
“Andrew Ng”. By investigating some person name - based test searches, we expect the number of search
hits decreases a lot if the word is misspelled. We denote Nhits(v) as the number of hits for value v. Let
Nnhits(v) be number of hits for a value of v with some noise added. We set m to 5 and change 4 letters
or numbers randomly. The trust is calculated as in Equation (34) and as the result, the maximum trust
value is selected.

Trust(v) = 1−
∑

1≤i≤m Nnhits(v)
m ·Nhits(v) (34)

During experiments, random clusters, having more than 10 values of specific attribute were selected for
redundancy elimination. Using clusters with multiple values, the results are more representative because
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Figure 12: Redundancy elimination on CiteSeer dataset for 34 random clusters (as a result of ER), containing
author names.

Table 2: Redundancy elimination classification accuracy on 34 random author name clusters from CiteSeer
dataset. The trust algorithm was repeated 10-times and others 100-times.

Random Naive Naive+ Trust
Noise Mean Std. d. Mean Std. d. Mean Std. d. Mean Std. d.
90% 0.37 0.078 0.41 0.083 0.17 0.063 0.74 0.084
80% 0.47 0.074 0.43 0.067 0.31 0.074 0.78 0.067
70% 0.47 0.069 0.43 0.075 0.39 0.070 0.82 0.046
60% 0.54 0.064 0.42 0.082 0.45 0.076 0.82 0.036
50% 0.58 0.062 0.40 0.084 0.56 0.081 0.87 0.033
40% 0.62 0.067 0.42 0.071 0.67 0.071 0.88 0.038
30% 0.70 0.062 0.41 0.083 0.71 0.075 0.94 0.032
20% 0.82 0.038 0.41 0.078 0.81 0.061 0.94 0.038
10% 0.88 0.038 0.42 0.063 0.89 0.050 0.95 0.044

it is harder to select the right value. In each cluster, we add noise to a portion of values. So, one of the
non-noise values is expected to be returned as a result of redundancy elimination because they certainly
better represent the entity and this is taken as a measure of classification accuracy.

Author name attribute redundancy elimination results are presented on Figure 12 and in Table 2. The trust
measure achieves better results comparing to others. It is expected for accuracy to be inversely proportional
to level of noise, but the classification accuracy of the trust is above 70% even with 90% of noise in data.
As we see, the trust measure outperforms other approaches throughout the test. The naive measure gives
almost constant accuracy at all times. Naive+ approach performs vey bad by increasing the number of noise
values. The reason it works better than naive at low noise levels is that there are many similar or equal
values in cluster, but at higher levels, the majority of values are quite different. It’s results are similar to the
random measure. Random approach results are expected, maybe even too good with clusters of a lot of noise.
When having no knowledge of cluster values, performance of redundancy elimination would equal to random
approach.

The experiment shows it may be easy to get useful redundancy eliminator for specific types of values, but the
solution remains to initialize trust levels across the domain and update them continuously during system’s
lifetime.
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6.5 Experiments summary

We presented some experiments on the attribute, entity resolution and redundancy elimination components
of the proposed general framework for matching and merging (see Figure 6).

As first, attribute resolution matches the datasets to the same semantic representation (see section 6.2).
When datasets are not appropriately matched, missing attribute pairs cannot even be compared or wrong
values are considered. Therefore, further matching strongly depends on attribute resolution result.

Second, we showed entity resolution improves if additional semantic similarity measure is used (see section
6.3). Semantic similarity is attribute type-specific and cannot be defined in general. Thus, a number of
metrics could be predefined and then selected for each attribute type.

Third, input to redundancy elimination are clusters as a result from entity resolution (see section 6.4). For
author names, we showed the search engine results as a value of trust, can help us determine the most
appropriate value. Also, this component’s results strongly depend on matched clusters results as only one
value within specific cluster can be selected.

To summarize, best evaluation measuring interdependence between components could be achieved only when
having a dataset annotated with all needed contexts we defined. The proposed framework can be employed
for general tasks, but would be outperformed by domain-specific applications.

7 Discussion

Proposed framework for matching and merging represents a general and complete solution, applicable in all
diverse areas of use. Introduction of contexts allows a joint control over various dimensions of matching and
merging variability, providing for specific needs of each scenario. Furthermore, data architecture combines
simple (network) data with semantically enriched data, which makes the proposition applicable for any data
source. Framework can thus be used as a general solution for merging data from heterogeneous sources, and
also merely for matching.

The fundamental difference between matching, including only attribute and entity resolution, and merging,
including also redundancy elimination, is, besides the obvious, in the fact that merged data is read-only.
Since datasets, obtained after merging, do not necessarily resemble the original datasets, the data cannot be
altered thus the changes would apply also in the original datasets. Alternative approach is to merely match
the given datasets and to merge them only on demand. When altering matched data, user can change the
original datasets (that are in this phase still represented independently) or change the merged dataset (that
was previously demanded for), in which case he must also provide an appropriate strategy, how the changes
should be applied in the original datasets.

Proposed algorithms employ network data, semantically enriched with ontologies. With the advent of
Semantic Web, ontologies are gaining importance mainly due to availability of formal ontology languages.
These standardization efforts promote several notable uses of ontologies like assisting in communication
between people, achieving interoperability (communication) among heterogeneous software systems and
improving the design and quality of software systems. One of the most prominent applications is in the
domain of semantic interoperability. While pure semantics concerns the study of meanings, semantic elevation
means to achieve semantic interoperability and can be considered as a subset of information integration
(including data access, aggregation, correlation and transformation). Semantic elevation of proposed matching
and merging framework represents one major step towards this end.

Use of trust-aware techniques and algorithms introduces several key properties. Firstly, an adequate trust
management provides means to deal with uncertain or questionable data sources, by modeling trustworthiness
of each provided value appropriately. Secondly, algorithms jointly optimize not only entity resolution or
redundancy elimination of provided datasets, but also the trustworthiness of the resulting datasets. The latter
can substantially increase the accuracy. Thirdly, trustworthiness of data can be used also for security reasons,
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by seeing trustworthy values as more secure. Optimizing the trustworthiness of matching and merging thus
also results in an efficient security assurance.

Although, contexts are merely a way to guide the execution of some algorithm, their definition is relatively
different from that of any simple parameter. The execution is controlled with mere definition of the contexts,
when in the case of parameters, it is controlled by assigning different values. For instance, when default
behavior is desired, the parameters still need to be assigned, when in the case of contexts, the algorithm is
used as it is. For any general solution, working with heterogeneous clients, such behavior can significantly
reduce the complexity.

As different contexts are used jointly throughout matching and merging execution, they allow a collective
control over various dimensions of variability. Furthermore, each execution is controlled and also characterized
with the context it defines, which can be used to compare and analyze different executions or matching and
merging algorithms.

Last, we briefly discuss a possible disadvantage of the proposed framework. As the framework represents
a general solution, applicable in all diverse domains, the performance of some domain-specific approach or
algorithm can still be superior. However, such approaches commonly cannot be generalized and are thus
inappropriate for practical (general) use.

8 Conclusion

This paper advances previously published paper (Šubelj et al., 2011) which contains only theoretical view of
the proposed framework for data matching and merging. In this work we again overview the whole framework
with minor changes, but most importantly we introduce different metrics implementation details and full
framework demonstration.

The proposed framework follows a three level architecture using network-based data representation from data
to semantic and lastly to abstract level. Data on each level is always a superset of lower ones due to inclusion
of various context types, trust values or additional metadata. We also identify three main context types –
user, data and trust context type – which are a formal representation of all possible operations. One of the
novelties is also trust management that is available across all steps during the execution.

To support our framework proposal, we conduct experiments of three main components – attribute resolution,
entity resolution and redundancy elimination – using trust and semantics. Like we theoretically anticipated,
results on five datasets show that semantic elevation and proper trust management significantly improve
overall results.

In further work we will additionally incorporate network analysis techniques such as community detection
(Šubelj and Bajec, 2011a) or recent research on self-similar networks (Blagus et al., 2012), which finds
network hierarchies with a number of common properties that may also improve the results of proposed
approach. Furthermore, ontology-based information extraction techniques will be employed into entity
resolution algorithm to gain more knowledge about non-atomic values.
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