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Abstract—Efficient data manipulation and retrieval is a 

fundamental part of many business processes in the majority of 

todays’ companies. SQL, as a standard, is widely adopted and 

well accepted in this area. Students who set out to learn SQL 

frequently face difficulties. The learning process is to some 

extent inefficient, as the student’s knowledge is afterwards often 

inadequate. Several computer-aided systems have been 

developed to alleviate the problem. However, most of them are 

static and rigid, because the system’s knowledge is encoded 

manually. We propose a new system based on past attempts and 

solutions to SQL exercises. The proposed system is flexible and 

dynamic, as it adapts to the individual student and requires 

minimal intervention from domain experts. We show that the 

system is beneficial, in particular to students with low prior 

knowledge. 

 

Index Terms—Intelligent tutoring systems, SQL learning, 

Markov Decision Processes, adaptive hint generation. 

 

I. INTRODUCTION 

The majority of today‘s companies depend on efficient 

data storage, retrieval and manipulation. In the past century a 

standard for data manipulation has emerged, namely the 

Structured Query Language (SQL). Even though alternatives, 

such as NoSQL and NewSQL, are also beginning to gain 

traction, most of computing systems nowadays actively use 

SQL. The need for well-qualified personnel, proficient in 

SQL, is great. Students obtain knowledge of SQL either 

through an undergraduate database course, online courses or 

in other technical institutions. The students however, after 

completing a course in SQL, do not necessarily posses the 

proper knowledge or their knowledge is inadequate [1]. 

Typically, students misinterpret the fundamental concepts of 

the language and in general have difficulties in formulating 

correct and more importantly, efficient queries. Common 

misconceptions include concepts such as data aggregation, 

joins, filtering using predicates etc. Additionally, the students 

have difficulties memorizing database schemas, table and/or 

attribute names while being graded [2]. It was recognized by 

Prior et al. in their study, that students are unable to visualize 

the result of their written query, unless there is an option to 

execute their query against the database. Consequentially 

several SQL teaching systems now include a visualization of 

the database schema and also attribute and table names to 

relieve the students during grading. Such systems frequently 

offer the option of testing one‘s query to receive instant 

feedback. The core of the problem however, is not in the 

difficulties presented by the grading process but by the 

complexity of the language itself. 
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The learning process is structured in a way to test select 

concepts of the language. The complexity of the exercises is 

higher than expected, from the student‘s perspective, unless 

that student has had extensive practice beforehand. Several 

computer-aided systems were developed to alleviate this 

problem, with intelligent tutoring systems (ITS) being the 

most successful [3]-[5]. Such systems employ hints to aid the 

educational process. ITS systems are also being used on SQL 

domain, but currently lack dynamic and adaptive behaviour. 

Due to this, domain experts are required in order to manually 

encode the knowledge used by the system, which is then 

static. The time and cost of these systems is high. 

Furthermore, the current systems lack the ability to adapt to 

an individual student. 

We propose a new system, which is capable of generating 

hints for various states of SQL exercise-solving process and 

requires minimal intervention from the experts, as all hints 

are generated using past student attempts. Our system is 

adaptive in the sense that it adapts to the current state of the 

student and offers a specific hint. We perform evaluation of 

our system in an actual learning environment to measure the 

impact and usefulness of the hints. 

The rest of this paper is organised as follows. The next 

section provides a brief overview of computer-aided 

education in general, intelligent tutoring systems and 

approaches for learning SQL. In Section III we provide an 

extensive description of the proposed system with system‘s 

architecture and the process of hint generation. In Section IV 

we perform an empirical evaluation of the proposed system 

on a group of 93 participants with diverse prior knowledge of 

SQL. We conclude and provide future directions for 

improving our research in Section V. 

 

II. RELATED WORK 

Although in early Computer Aided Instruction (CAI) 

systems students may have had some influence on navigation 

through the curriculum, they all received the same contents 

[3], [6], [7]. In the later CAI systems branching provided 

different responses to a student's answer, depending on what 

student's response was [6], [8]. This kind of CAI systems 

possessed no domain knowledge, meaning that every 

feedback had to be provided by experts manually. Usually the 

feedback was limited to right/wrong answers and sometimes 

to presentation of a correct answer. 

With CAI systems, modest gains can be reached in contrast 

to classroom learning, but one-to-one way of tutoring can not 

be achieved [9]. That encouraged researchers to improve 

computer-based teaching environments to more closely 

imitate human tutors, resulting in emergence of Intelligent 

Tutoring Systems (ITS) [4], [10], which adapt to user's 

individual needs. Such systems recommend educational 

activities and deliver individual feedback regarding the 
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student's profile, specified by the student's knowledge or 

activities within the course. 

The most acclaimed ITS systems evolved through the 

history are cognitive tutors [11], [12] followed by approaches, 

based on constraint-based modelling [3], [13], [14] or the 

principle of constructing student models with machine 

learning techniques [6], [15].  

Cognitive tutors base on ACT* theory [16] and are 

intended for solving procedural problems, where the problem 

domain is modelled as a set of production rules. A system 

monitors the student while solving a problem and when 

he/she deviates from the predicted path, it offers a hint 

automatically. Cognitive tutors are too restrictive and as such 

not suitable for all problem domains. They are also hard to 

build, because advanced AI programming skills are required 

to design them. For example, to define necessary rules for 

SQL domain, it might take the experts more than one year 

[17], which represents a serious obstacle.  

Constraint-based modelling (CBM) is used in the second 

approach to building ITS systems [3], [18]-[20]. Here, the 

knowledge of target domain is represented as a collection of 

constraints. If all constraints are satisfied, the system 

considers solution as correct, but if constraints are violated 

they become targets for instruction. If specific constraint is 

violated, the CBM system provides a feedback associated 

with that constraint. An advantage of CBM system is that no 

additional study of student's errors is required for its 

implementation. An important set of errors is implicitly 

defined by aforementioned constraints. SQL-Tutor [3] is an 

important representative of CBM system. 

A significant amount of time is needed to define rules and 

constraints for cognitive tutors and CBM systems to become 

useful [14], [21], [22]. To some extent, AI methods can be 

used to automatically generate set of rules and constraints, if 

there is enough data about specific domain to learn from [13], 

[22]. In this way domain experts, who are not skilled 

programmers can produce contents for ITS systems. Domain 

experts performing programming by demonstration is an 

approach used to describe particular problem domain, while 

the system builds proper program constructs independently. 

Data logged during student learning have also become 

important, since sufficient amount of data enables 

information extraction for further usage in learning systems. 

The approach is used to build knowledge base for specific 

domain, using former student solutions. For instance, Hint 

factory [5] is an intelligent system that uses student data to 

build Markov Decision Process (MDP), which represents all 

approaches to a particular problem and uses MDP for hint 

generation. 

Building ITS systems has always been expensive and 

time-consuming process, where many different experts with 

adequate programming knowledge have been involved [5], 

[6], [13], [23]. We would like to find a balance among the 

complexity of building such systems, invested time and their 

price. We also strive for the system to work successfully and 

to perform an effective learning process. Consequently, we 

have to analyze the disadvantages of previously presented 

approaches to find suitable solution. 

Cognitive tutors are rather intrusive from the student's 

perspective, because they constantly correct user entries and 

warn us if we turn off the planned path. Since the domain 

model is made of procedural rules and if there are alternative 

paths to problem solution, more rules are needed, which 

requires more time and is related to higher costs. That usually 

leads to definition of rules for one alternative only [8]. In case 

of CBM systems, the generality of used constraints represents 

an issue reflecting in misleading feedback. Unlike the 

cognitive tutors, CBM system does not possess any 

information about problem-solving procedure and it only 

checks matching the solution to general constraints. 

Cognitive tutors and CBM systems are based on static 

approach for building problem domain. Only experts who 

precisely understand the domain can build these systems. 

With AI methods problem domain can be built dynamically, 

which eliminates the need for domain expert and allows 

teachers without the understanding of how these systems 

work, to build intelligent systems. In case of using domain 

model, based on historical data, we can map student's 

solution to historical data of their colleagues. The complexity 

of such solution still remains high. 

Our system is based on past student attempts (historical 

data) at solving SQL related exercises. We used the 

information within the data itself to remove the need of an 

expert to encode the solutions manually. One of the 

advantages of our system is automatic building of knowledge 

base with no required human intervention. The hints being 

given to students are based on correct solutions of their 

colleagues from previous study years. Additionally, the 

system can adapt to student's path of solving the problem and 

offers a hint precisely targeted to student's current solution, 

rather than offer a general, undirected hint. AI represents a 

vital part of the system and its task is to perform state 

exploration until the best state is found and construction of 

the knowledge base using past attempts. Comprehensive 

description of the system internals is provided in the next 

section.  

 

III. PROPOSED SYSTEM 

The proposed system supports both the student‘s and 

teacher‘s aspect. The basic architecture of the system is 

depicted in Fig. 1 and covers the teacher‘s aspect, the 

student‘s aspect and the architecture of the recommender 

system. An instructor (teacher) is able to prepare assignments 

by specifying assignment instructions, the ideal solutions for 

the exercise and evaluation rules, which determine how is the 

grading performed. One can observe the individual 

components of the recommender system involved in each 

process (for example in assignment formulation process the 

following components of the recommender system are used 

sequentially: W1, A2, D1). 

The student‘s perspective allows the use of hints to aid the 

exercise-solving process. Students may formulate and adapt 

their query, execute it to receive feedback or request a hint. 

When requesting a hint, an adapted query is returned, 

according to the current student‘s formulated query. Student 

may use the hint or ignore it altogether. At the end of the 

process students submit their solution as final. 

The basis of our system are past attempts of students (SQL 

queries) from previous generations. The historical data were 

collected during years 2012 and 2014 in a process of 

evaluating student‘s SQL skills during the ―Introduction to 

databases‖ course at University of Ljubljana, Faculty of 
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Computer and Information Science. Overall the solution pool 

contained over 30.000 entries spread across approximately 

60 exercises and 2 different database schemas (including the 

well-known Northwind database). Our data contain the 

necessary information to create a model, which adapts to a 

student and offers a specific hint rather than a general one. 

The system is based on Markov decision process (MDP), 

previously used for hint generation by Barnes et al. [5], but 

adapted for SQL domain. MDP is defined as a tuple 

 
〈         〉,                                        (1) 

 

where   is a finite set of states,   a finite set of actions 

connecting the states,   a matrix of transition probabilities, 

  a reward function and   a discount factor. The behaviour 

of the agent in any of the states is stochastic, as matrix   

defines the likelihood of an agent choosing a specific action 

and actually reaching the intended destination. Actions 

therefore have multiple destinations, which are 

nondeterministic. The reward function allows us to rank the 

states according to some criterion, so that the agent can avoid 

low reward states, or even states with negative reward 

(punishment), and rather focus on reaching high reward, 

desired states. 

 

 
Fig. 1. Architecture of the proposed system.  

 

The agent‘s behaviour in such dynamic system is defined 

by a policy  , which is essentially a mapping of states to 

actions and determines which action the agent should choose 

in every state it reaches. A value function is defined as  

 

  ( )   ∑     (      (  ))  .                     (2) 

 

We make use of value iteration to iteratively update 

rewards of all states until a global maximum of the value 

function is reached: 

 

            (3) 

 

The discount factor allows us to give priority to either 

short-term or long-term rewards. In our case we prefer the 

long-term rewards. 

We do not directly use SQL queries found in historical 

data as states in MDPs. We first transform the text form of 

the queries into a tree structure using ANTLR parser [24]. 

An example of such tree structure can be seen in Fig. 2. The 

queries alone do not suffice to produce valuable hints, as 

they do not contain the order of query construction (i.e. how 

the students arrived at the final solution). Since neither our 

historical data contain such information, we were forced to 

generate it using merely the final solutions. The assumption 

we take is that the students construct their query in order of 

the general sections of the query. A section is any major part 

of the query such as SELECT clause, FROM clause etc. 

Such assumption is unlikely, however proves sufficiently 

useful. The sections assumption allows us to perform a 

depth-first tree traversal, stopping at right-most leaves and 
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producing a copy of the tree for each such leaf. This yields a 

forest of all the (possible) solution steps that lead to the final 

query, as can be seen in Fig. 2. 

It is the generated individual solution steps, such as in Fig. 

2., which are then mapped to states in MDP graph. Because 

each solution step is a prefix of the next solution step, in 

terms of query text representation, we add actions among 

consecutive solution steps (states). For a given exercise, we 

merge all possible solution paths (which consist of solution 

steps) into an MDP graph, while making sure there are no 

duplicate states. Probability matrix is determined as a 

relative frequency of students who moved from one state to 

another, given historical data. Rewards for final states (final 

solution steps) are determined using an existing query 

evaluation component. The component evaluates a query by 

comparing the result set of the student‘s solution with the 

result set of an ideal (instructor‘s) solution. Points are then 

deducted if rows or columns are missing, if the order of rows 

is incorrect etc. A final state receives a high reward if its 

query score is above 95%. Otherwise the state receives a 

negative reward. The end result is a collective knowledge 

base for a single exercise according to all the students, which 

made an attempt at solving this exercise. 
 

 
Fig. 2. An example of solution steps construction. 

 

The hint generation process accepts the current student‘s 

query in order to match it with one of the states in the MDP 

graph. The system finds a corresponding MDP for the 

exercise first. We cache the MDPs for all exercises to avoid 

the overhead of database I/O. We parse the student‘s query 

in a similar way as the historical data queries, to produce a 

tree structure, which is then matched to one of the states in 

MDP graph. A tree distance criterion is used for matching, 

namely the Zhang-Shasha algorithm [25]. Once a matching 

state is found, the neighbouring state with the highest reward 

is offered as a hint (the query in the next state is converted 

back to a text representation). We also add backward actions 

to allow returning from an incorrect MDP branch. This can 

happen if the reward of taking the backward action is higher 

than the reward of taking any forward action. In such cases, 

the system returns from the subtree, which represents an 

incorrect solution, to the first common ancestor state of both 

the incorrect subtree and an alternative correct subtree. 

Skipping the entire incorrect subtree is necessary in order to 

ensure that hints are progressive.  The system is also seeded 

using ideal solutions from instructors. This partially solves 

the cold-start problem of new exercises, which do not yet 

have historical data available for hints, as it allows the 

students to receive hints leading them to one of the ideal 

solutions. 

An example of hint construction is visible in Table I. The 

first row of the table corresponds to a scenario, where the 

student is located in an incorrect MDP branch. Observe, that 

the system does not direct the student towards the ideal 

solution (one of the ideal solutions actually), but proposes an 

alternative MDP branch, which eventually leads to the 

correct solution. The alternative MDP branch was 

constructed by another student‘s solution from the previous 

generation. The last hint in the first row demonstrates that 

nested queries are also supported. The second row of the 

table corresponds to a scenario, where the student‘s solution 

is partially correct, yet the student fails to continue. As one 

can observe, the student forgot to include the department 

table, which is what the hint corrects. A visual example of 

how the hints are presented can be seen in Fig. 3. 
 

TABLE I: EXAMPLE OF CONSTRUCTED HINTS FOR SPECIFIC EXERCISES, 

GIVEN STUDENT‘S SOLUTION 

Task 

description 

Ideal  

solution 

Student’s  

solution 
Hints 

Return the 

number of 

employees 

in 

department 

‗SALES‘ 

SELECT 
COUNT(*) 

FROM employee,  

  department 

WHERE  

  employee.dept_ID 

=    

  

department.dept_ID 

AND  

  department.name =  

    ‗SALES‘ 

SELECT *  

FROM department 
SELECT 
COUNT(*) 

FROM department 

WHERE dept_ID 

 

SELECT 
COUNT(*) 

FROM department 

WHERE dept_ID 

IN ( 

  SELECT dept_ID 

) 

Return the 

number of 

employees 

in region 

‗DALLAS‘ 

SELECT 
COUNT(*) 

FROM employee e,  

  department d, 

location l 

WHERE e.dept_ID 

=  

  d.dept_ID AND  

  d.loc_ID = l.loc_ID 

AND  

  region = 

‗DALLAS‘ 

GROUP BY region 

SELECT  

  COUNT(e.emp_ID) 

FROM employee e,  

  location l 

WHERE  

  region = 

‗DALLAS‘ 

SELECT  

  

COUNT(e.emp_ID) 

FROM employee e,  

  location l, 

department d 

 

 
Fig. 3. Web interface of the exercise-solving simulation. 

 

IV. EVALUATION 

We evaluated the recommender system on a group of 93 
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participants, where each of them completed three 

assignments. Before conducting the experiment participants 

provided information about their prior knowledge – SQL 

proficiency level and years of experience in SQL. The 

obtained sample of participants had nearly normal 

distribution of their self-reported prior knowledge. 

Every participant was required to provide a solution to 

three randomly selected SQL assignments that were 

classified into a category based on the difficulty level. Every 

participant was randomly allocated one easy, one moderate 

and one difficult assignment. 

As Fig. 3 depicts participants entered a query into user‘s 

query box and interactively evaluated the results. When they 

were unable to continue, they requested a hint from the 

recommender system, which was then displayed next to the 

user query with indicated adaptations of the current query. 

Every participant could request unlimited number of hints 

per assignments. To discourage participants to excessive use 

of hints or even solving the complete assignment with hints 

only, a small score penalty (inversely proportional to 

assignment complexity) was introduced for hint 

employment, which was clearly introduced to the 

participants before starting the evaluation. 

To evaluate the performance of proposed recommender 

system we cluster participants into four groups, based on 

hints employment (no hints vs. using hints) and SQL 

proficiency level (low vs. high prior knowledge). 

With evaluation of the proposed recommender system we 

focus mainly on the distance from the correct solution 

 in a given time (number of steps to accomplish the 

correct solution). We define a linear association 

 

                       (4) 

 

where type  (all, pre_first_hint, post_first_hint, 

after_hint_avg). The following Table II depicts aggregated 

mean results per predefined four clusters. When interpreting 

the results we strive to obtain as negative  values as 

possible, which indicate rapid advancement towards correct 

solution (e.g. minimize distance to correct solution over time) 

and by doing that, measure the effect of hint employment. 
 

TABLE II: CLUSTER ANALYSIS RESULTS 

hints 

employment 

prior 

knowledge 
all pre_first_hint post_first_hint after_hint_avg 

no hints low pk -1.12 - - - 

no hints high pk -0.92 - - - 

using hints low pk -0.61 -0.75 -1.61 -9.38 

using hints high pk -0.89 -1.82 -1.63 -5.94 

 

To further investigate the differences between four groups 

of participants, Fig. 4 depicts the most representational 

participant of every cluster group. The figure depicts the 

timeline of representational participant solving the 

assignment with every recorded action, where hint 

employment is highlighted (blue dots). Additionally, three 

regression lines and coefficients are also depicted, based on 

the following filtering: 1) βall for all actions, 2) βpre_first_hint for 

actions before first hint employment and 3) βpost_first_hint for 

actions after the first hint employment. 

When considering groups of participants not employing 

hints we can observe that participants with high domain 

knowledge without major fluctuations reach the correct final 

solution in contrast to participants with low domain 

knowledge who experience some variation in terms of 

distance to correct solution . 

When further observing participants that employed hints, 

we can conclude that proposed recommender system 

provide beneficial results as the impact of hint employment 

is evident. The βafter_hint_avg is significantly lower than βall for 

both subgroups (low and high prior knowledge). There is 

still a distinct difference between low and high prior 

knowledge subgroups. Fig. 4 depicts that participants with 

low domain knowledge will employ hint when they don‘t 

know how to proceed to the correct solution and then 

afterwards they experience the boost in terms of rapid 

decline of a distance to correct solution . 
 

 
Fig. 4. Individual‘s cluster user timeline. 

 

V. CONCLUSION 

We have presented a new system, which was used to 

assist students during SQL learning process. The system 

makes extensive use of historical data, previous student 

attempts at similar SQL exercises. The proposed system is 

adaptive in the sense that it adapts to the current state of the 

student and offers a specific hint. Minimal intervention from 

the experts ensures that the system can be used and deployed 

by most people, without having to manually enter an array of 

production rules. In cases when there are no historical data 

for a specific exercise, the instructor can speed up hint 

generation by specifying ideal solutions. Furthermore, any 

new solution submitted by a student, can be included 

automatically in the system's knowledgebase. 

The system's performance was evaluated in an actual 

learning environment with 93 participants of diverse prior 

knowledge. As expected the system is most beneficial to 

students with low prior knowledge. The hints turn out to be 

well accepted as the distance to correct solution drops 

singificantly after the employed hint and then remains 

relatively stable. The goal of the hints has a broader intent 

than to merely improve the score of the students. When a 

student does not know how to proceed, a hint may be 
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requested, which in turn may propose an alternative solution 

path. The students explore the alternative paths, performing 

errors while doing so, but also improving their skill set. This 

is also why the distance to correct solution for some students, 

after receiving a hint, is increased in the subsequent steps. 
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