



Abstract—Efficient data manipulation and retrieval is a

fundamental part of many business processes in the majority of

todays’ companies. SQL, as a standard, is widely adopted and

well accepted in this area. Students who set out to learn SQL

frequently face difficulties. The learning process is to some

extent inefficient, as the student’s knowledge is afterwards often

inadequate. Several computer-aided systems have been

developed to alleviate the problem. However, most of them are

static and rigid, because the system’s knowledge is encoded

manually. We propose a new system based on past attempts and

solutions to SQL exercises. The proposed system is flexible and

dynamic, as it adapts to the individual student and requires

minimal intervention from domain experts. We show that the

system is beneficial, in particular to students with low prior

knowledge.

Index Terms—Intelligent tutoring systems, SQL learning,

Markov Decision Processes, adaptive hint generation.

I. INTRODUCTION

The majority of today‘s companies depend on efficient

data storage, retrieval and manipulation. In the past century a

standard for data manipulation has emerged, namely the

Structured Query Language (SQL). Even though alternatives,

such as NoSQL and NewSQL, are also beginning to gain

traction, most of computing systems nowadays actively use

SQL. The need for well-qualified personnel, proficient in

SQL, is great. Students obtain knowledge of SQL either

through an undergraduate database course, online courses or

in other technical institutions. The students however, after

completing a course in SQL, do not necessarily posses the

proper knowledge or their knowledge is inadequate [1].

Typically, students misinterpret the fundamental concepts of

the language and in general have difficulties in formulating

correct and more importantly, efficient queries. Common

misconceptions include concepts such as data aggregation,

joins, filtering using predicates etc. Additionally, the students

have difficulties memorizing database schemas, table and/or

attribute names while being graded [2]. It was recognized by

Prior et al. in their study, that students are unable to visualize

the result of their written query, unless there is an option to

execute their query against the database. Consequentially

several SQL teaching systems now include a visualization of

the database schema and also attribute and table names to

relieve the students during grading. Such systems frequently

offer the option of testing one‘s query to receive instant

feedback. The core of the problem however, is not in the

difficulties presented by the grading process but by the

complexity of the language itself.

Manuscript received August 13, 2016; revised January 5, 2017.

Tadej Matek is with the Faculty of Computer and Information Science,

University of Ljubljana, Slovenia.

Aljaž Zrnec and Dejan Lavbič are with the Laboratory for Data

Technologies, Slovenia (e-mail: Dejan.Lavbic@fri.uni-lj.si).

The learning process is structured in a way to test select

concepts of the language. The complexity of the exercises is

higher than expected, from the student‘s perspective, unless

that student has had extensive practice beforehand. Several

computer-aided systems were developed to alleviate this

problem, with intelligent tutoring systems (ITS) being the

most successful [3]-[5]. Such systems employ hints to aid the

educational process. ITS systems are also being used on SQL

domain, but currently lack dynamic and adaptive behaviour.

Due to this, domain experts are required in order to manually

encode the knowledge used by the system, which is then

static. The time and cost of these systems is high.

Furthermore, the current systems lack the ability to adapt to

an individual student.

We propose a new system, which is capable of generating

hints for various states of SQL exercise-solving process and

requires minimal intervention from the experts, as all hints

are generated using past student attempts. Our system is

adaptive in the sense that it adapts to the current state of the

student and offers a specific hint. We perform evaluation of

our system in an actual learning environment to measure the

impact and usefulness of the hints.

The rest of this paper is organised as follows. The next

section provides a brief overview of computer-aided

education in general, intelligent tutoring systems and

approaches for learning SQL. In Section III we provide an

extensive description of the proposed system with system‘s

architecture and the process of hint generation. In Section IV

we perform an empirical evaluation of the proposed system

on a group of 93 participants with diverse prior knowledge of

SQL. We conclude and provide future directions for

improving our research in Section V.

II. RELATED WORK

Although in early Computer Aided Instruction (CAI)

systems students may have had some influence on navigation

through the curriculum, they all received the same contents

[3], [6], [7]. In the later CAI systems branching provided

different responses to a student's answer, depending on what

student's response was [6], [8]. This kind of CAI systems

possessed no domain knowledge, meaning that every

feedback had to be provided by experts manually. Usually the

feedback was limited to right/wrong answers and sometimes

to presentation of a correct answer.

With CAI systems, modest gains can be reached in contrast

to classroom learning, but one-to-one way of tutoring can not

be achieved [9]. That encouraged researchers to improve

computer-based teaching environments to more closely

imitate human tutors, resulting in emergence of Intelligent

Tutoring Systems (ITS) [4], [10], which adapt to user's

individual needs. Such systems recommend educational

activities and deliver individual feedback regarding the

Learning SQL with Artificial Intelligent Aided Approach

Tadej Matek, Aljaž Zrnec, and Dejan Lavbič

International Journal of Information and Education Technology, Vol. 7, No. 11, November 2017

803doi: 10.18178/ijiet.2017.7.11.976

student's profile, specified by the student's knowledge or

activities within the course.

The most acclaimed ITS systems evolved through the

history are cognitive tutors [11], [12] followed by approaches,

based on constraint-based modelling [3], [13], [14] or the

principle of constructing student models with machine

learning techniques [6], [15].

Cognitive tutors base on ACT* theory [16] and are

intended for solving procedural problems, where the problem

domain is modelled as a set of production rules. A system

monitors the student while solving a problem and when

he/she deviates from the predicted path, it offers a hint

automatically. Cognitive tutors are too restrictive and as such

not suitable for all problem domains. They are also hard to

build, because advanced AI programming skills are required

to design them. For example, to define necessary rules for

SQL domain, it might take the experts more than one year

[17], which represents a serious obstacle.

Constraint-based modelling (CBM) is used in the second

approach to building ITS systems [3], [18]-[20]. Here, the

knowledge of target domain is represented as a collection of

constraints. If all constraints are satisfied, the system

considers solution as correct, but if constraints are violated

they become targets for instruction. If specific constraint is

violated, the CBM system provides a feedback associated

with that constraint. An advantage of CBM system is that no

additional study of student's errors is required for its

implementation. An important set of errors is implicitly

defined by aforementioned constraints. SQL-Tutor [3] is an

important representative of CBM system.

A significant amount of time is needed to define rules and

constraints for cognitive tutors and CBM systems to become

useful [14], [21], [22]. To some extent, AI methods can be

used to automatically generate set of rules and constraints, if

there is enough data about specific domain to learn from [13],

[22]. In this way domain experts, who are not skilled

programmers can produce contents for ITS systems. Domain

experts performing programming by demonstration is an

approach used to describe particular problem domain, while

the system builds proper program constructs independently.

Data logged during student learning have also become

important, since sufficient amount of data enables

information extraction for further usage in learning systems.

The approach is used to build knowledge base for specific

domain, using former student solutions. For instance, Hint

factory [5] is an intelligent system that uses student data to

build Markov Decision Process (MDP), which represents all

approaches to a particular problem and uses MDP for hint

generation.

Building ITS systems has always been expensive and

time-consuming process, where many different experts with

adequate programming knowledge have been involved [5],

[6], [13], [23]. We would like to find a balance among the

complexity of building such systems, invested time and their

price. We also strive for the system to work successfully and

to perform an effective learning process. Consequently, we

have to analyze the disadvantages of previously presented

approaches to find suitable solution.

Cognitive tutors are rather intrusive from the student's

perspective, because they constantly correct user entries and

warn us if we turn off the planned path. Since the domain

model is made of procedural rules and if there are alternative

paths to problem solution, more rules are needed, which

requires more time and is related to higher costs. That usually

leads to definition of rules for one alternative only [8]. In case

of CBM systems, the generality of used constraints represents

an issue reflecting in misleading feedback. Unlike the

cognitive tutors, CBM system does not possess any

information about problem-solving procedure and it only

checks matching the solution to general constraints.

Cognitive tutors and CBM systems are based on static

approach for building problem domain. Only experts who

precisely understand the domain can build these systems.

With AI methods problem domain can be built dynamically,

which eliminates the need for domain expert and allows

teachers without the understanding of how these systems

work, to build intelligent systems. In case of using domain

model, based on historical data, we can map student's

solution to historical data of their colleagues. The complexity

of such solution still remains high.

Our system is based on past student attempts (historical

data) at solving SQL related exercises. We used the

information within the data itself to remove the need of an

expert to encode the solutions manually. One of the

advantages of our system is automatic building of knowledge

base with no required human intervention. The hints being

given to students are based on correct solutions of their

colleagues from previous study years. Additionally, the

system can adapt to student's path of solving the problem and

offers a hint precisely targeted to student's current solution,

rather than offer a general, undirected hint. AI represents a

vital part of the system and its task is to perform state

exploration until the best state is found and construction of

the knowledge base using past attempts. Comprehensive

description of the system internals is provided in the next

section.

III. PROPOSED SYSTEM

The proposed system supports both the student‘s and

teacher‘s aspect. The basic architecture of the system is

depicted in Fig. 1 and covers the teacher‘s aspect, the

student‘s aspect and the architecture of the recommender

system. An instructor (teacher) is able to prepare assignments

by specifying assignment instructions, the ideal solutions for

the exercise and evaluation rules, which determine how is the

grading performed. One can observe the individual

components of the recommender system involved in each

process (for example in assignment formulation process the

following components of the recommender system are used

sequentially: W1, A2, D1).

The student‘s perspective allows the use of hints to aid the

exercise-solving process. Students may formulate and adapt

their query, execute it to receive feedback or request a hint.

When requesting a hint, an adapted query is returned,

according to the current student‘s formulated query. Student

may use the hint or ignore it altogether. At the end of the

process students submit their solution as final.

The basis of our system are past attempts of students (SQL

queries) from previous generations. The historical data were

collected during years 2012 and 2014 in a process of

evaluating student‘s SQL skills during the ―Introduction to

databases‖ course at University of Ljubljana, Faculty of

International Journal of Information and Education Technology, Vol. 7, No. 11, November 2017

804

Computer and Information Science. Overall the solution pool

contained over 30.000 entries spread across approximately

60 exercises and 2 different database schemas (including the

well-known Northwind database). Our data contain the

necessary information to create a model, which adapts to a

student and offers a specific hint rather than a general one.

The system is based on Markov decision process (MDP),

previously used for hint generation by Barnes et al. [5], but

adapted for SQL domain. MDP is defined as a tuple

〈 〉, (1)

where is a finite set of states, a finite set of actions

connecting the states, a matrix of transition probabilities,

 a reward function and a discount factor. The behaviour

of the agent in any of the states is stochastic, as matrix

defines the likelihood of an agent choosing a specific action

and actually reaching the intended destination. Actions

therefore have multiple destinations, which are

nondeterministic. The reward function allows us to rank the

states according to some criterion, so that the agent can avoid

low reward states, or even states with negative reward

(punishment), and rather focus on reaching high reward,

desired states.

Fig. 1. Architecture of the proposed system.

The agent‘s behaviour in such dynamic system is defined

by a policy , which is essentially a mapping of states to

actions and determines which action the agent should choose

in every state it reaches. A value function is defined as

 () ∑ (()) . (2)

We make use of value iteration to iteratively update

rewards of all states until a global maximum of the value

function is reached:

 (3)

The discount factor allows us to give priority to either

short-term or long-term rewards. In our case we prefer the

long-term rewards.

We do not directly use SQL queries found in historical

data as states in MDPs. We first transform the text form of

the queries into a tree structure using ANTLR parser [24].

An example of such tree structure can be seen in Fig. 2. The

queries alone do not suffice to produce valuable hints, as

they do not contain the order of query construction (i.e. how

the students arrived at the final solution). Since neither our

historical data contain such information, we were forced to

generate it using merely the final solutions. The assumption

we take is that the students construct their query in order of

the general sections of the query. A section is any major part

of the query such as SELECT clause, FROM clause etc.

Such assumption is unlikely, however proves sufficiently

useful. The sections assumption allows us to perform a

depth-first tree traversal, stopping at right-most leaves and

International Journal of Information and Education Technology, Vol. 7, No. 11, November 2017

805

producing a copy of the tree for each such leaf. This yields a

forest of all the (possible) solution steps that lead to the final

query, as can be seen in Fig. 2.

It is the generated individual solution steps, such as in Fig.

2., which are then mapped to states in MDP graph. Because

each solution step is a prefix of the next solution step, in

terms of query text representation, we add actions among

consecutive solution steps (states). For a given exercise, we

merge all possible solution paths (which consist of solution

steps) into an MDP graph, while making sure there are no

duplicate states. Probability matrix is determined as a

relative frequency of students who moved from one state to

another, given historical data. Rewards for final states (final

solution steps) are determined using an existing query

evaluation component. The component evaluates a query by

comparing the result set of the student‘s solution with the

result set of an ideal (instructor‘s) solution. Points are then

deducted if rows or columns are missing, if the order of rows

is incorrect etc. A final state receives a high reward if its

query score is above 95%. Otherwise the state receives a

negative reward. The end result is a collective knowledge

base for a single exercise according to all the students, which

made an attempt at solving this exercise.

Fig. 2. An example of solution steps construction.

The hint generation process accepts the current student‘s

query in order to match it with one of the states in the MDP

graph. The system finds a corresponding MDP for the

exercise first. We cache the MDPs for all exercises to avoid

the overhead of database I/O. We parse the student‘s query

in a similar way as the historical data queries, to produce a

tree structure, which is then matched to one of the states in

MDP graph. A tree distance criterion is used for matching,

namely the Zhang-Shasha algorithm [25]. Once a matching

state is found, the neighbouring state with the highest reward

is offered as a hint (the query in the next state is converted

back to a text representation). We also add backward actions

to allow returning from an incorrect MDP branch. This can

happen if the reward of taking the backward action is higher

than the reward of taking any forward action. In such cases,

the system returns from the subtree, which represents an

incorrect solution, to the first common ancestor state of both

the incorrect subtree and an alternative correct subtree.

Skipping the entire incorrect subtree is necessary in order to

ensure that hints are progressive. The system is also seeded

using ideal solutions from instructors. This partially solves

the cold-start problem of new exercises, which do not yet

have historical data available for hints, as it allows the

students to receive hints leading them to one of the ideal

solutions.

An example of hint construction is visible in Table I. The

first row of the table corresponds to a scenario, where the

student is located in an incorrect MDP branch. Observe, that

the system does not direct the student towards the ideal

solution (one of the ideal solutions actually), but proposes an

alternative MDP branch, which eventually leads to the

correct solution. The alternative MDP branch was

constructed by another student‘s solution from the previous

generation. The last hint in the first row demonstrates that

nested queries are also supported. The second row of the

table corresponds to a scenario, where the student‘s solution

is partially correct, yet the student fails to continue. As one

can observe, the student forgot to include the department

table, which is what the hint corrects. A visual example of

how the hints are presented can be seen in Fig. 3.

TABLE I: EXAMPLE OF CONSTRUCTED HINTS FOR SPECIFIC EXERCISES,

GIVEN STUDENT‘S SOLUTION

Task

description

Ideal

solution

Student’s

solution
Hints

Return the

number of

employees

in

department

‗SALES‘

SELECT
COUNT(*)

FROM employee,

 department

WHERE

 employee.dept_ID

=

department.dept_ID

AND

 department.name =

 ‗SALES‘

SELECT *

FROM department
SELECT
COUNT(*)

FROM department

WHERE dept_ID

SELECT
COUNT(*)

FROM department

WHERE dept_ID

IN (

 SELECT dept_ID

)

Return the

number of

employees

in region

‗DALLAS‘

SELECT
COUNT(*)

FROM employee e,

 department d,

location l

WHERE e.dept_ID

=

 d.dept_ID AND

 d.loc_ID = l.loc_ID

AND

 region =

‗DALLAS‘

GROUP BY region

SELECT

 COUNT(e.emp_ID)

FROM employee e,

 location l

WHERE

 region =

‗DALLAS‘

SELECT

COUNT(e.emp_ID)

FROM employee e,

 location l,

department d

Fig. 3. Web interface of the exercise-solving simulation.

IV. EVALUATION

We evaluated the recommender system on a group of 93

International Journal of Information and Education Technology, Vol. 7, No. 11, November 2017

806

participants, where each of them completed three

assignments. Before conducting the experiment participants

provided information about their prior knowledge – SQL

proficiency level and years of experience in SQL. The

obtained sample of participants had nearly normal

distribution of their self-reported prior knowledge.

Every participant was required to provide a solution to

three randomly selected SQL assignments that were

classified into a category based on the difficulty level. Every

participant was randomly allocated one easy, one moderate

and one difficult assignment.

As Fig. 3 depicts participants entered a query into user‘s

query box and interactively evaluated the results. When they

were unable to continue, they requested a hint from the

recommender system, which was then displayed next to the

user query with indicated adaptations of the current query.

Every participant could request unlimited number of hints

per assignments. To discourage participants to excessive use

of hints or even solving the complete assignment with hints

only, a small score penalty (inversely proportional to

assignment complexity) was introduced for hint

employment, which was clearly introduced to the

participants before starting the evaluation.

To evaluate the performance of proposed recommender

system we cluster participants into four groups, based on

hints employment (no hints vs. using hints) and SQL

proficiency level (low vs. high prior knowledge).

With evaluation of the proposed recommender system we

focus mainly on the distance from the correct solution

 in a given time (number of steps to accomplish the

correct solution). We define a linear association

 (4)

where type  (all, pre_first_hint, post_first_hint,

after_hint_avg). The following Table II depicts aggregated

mean results per predefined four clusters. When interpreting

the results we strive to obtain as negative values as

possible, which indicate rapid advancement towards correct

solution (e.g. minimize distance to correct solution over time)

and by doing that, measure the effect of hint employment.

TABLE II: CLUSTER ANALYSIS RESULTS

hints

employment

prior

knowledge
all pre_first_hint post_first_hint after_hint_avg

no hints low pk -1.12 - - -

no hints high pk -0.92 - - -

using hints low pk -0.61 -0.75 -1.61 -9.38

using hints high pk -0.89 -1.82 -1.63 -5.94

To further investigate the differences between four groups

of participants, Fig. 4 depicts the most representational

participant of every cluster group. The figure depicts the

timeline of representational participant solving the

assignment with every recorded action, where hint

employment is highlighted (blue dots). Additionally, three

regression lines and coefficients are also depicted, based on

the following filtering: 1) βall for all actions, 2) βpre_first_hint for

actions before first hint employment and 3) βpost_first_hint for

actions after the first hint employment.

When considering groups of participants not employing

hints we can observe that participants with high domain

knowledge without major fluctuations reach the correct final

solution in contrast to participants with low domain

knowledge who experience some variation in terms of

distance to correct solution .

When further observing participants that employed hints,

we can conclude that proposed recommender system

provide beneficial results as the impact of hint employment

is evident. The βafter_hint_avg is significantly lower than βall for

both subgroups (low and high prior knowledge). There is

still a distinct difference between low and high prior

knowledge subgroups. Fig. 4 depicts that participants with

low domain knowledge will employ hint when they don‘t

know how to proceed to the correct solution and then

afterwards they experience the boost in terms of rapid

decline of a distance to correct solution .

Fig. 4. Individual‘s cluster user timeline.

V. CONCLUSION

We have presented a new system, which was used to

assist students during SQL learning process. The system

makes extensive use of historical data, previous student

attempts at similar SQL exercises. The proposed system is

adaptive in the sense that it adapts to the current state of the

student and offers a specific hint. Minimal intervention from

the experts ensures that the system can be used and deployed

by most people, without having to manually enter an array of

production rules. In cases when there are no historical data

for a specific exercise, the instructor can speed up hint

generation by specifying ideal solutions. Furthermore, any

new solution submitted by a student, can be included

automatically in the system's knowledgebase.

The system's performance was evaluated in an actual

learning environment with 93 participants of diverse prior

knowledge. As expected the system is most beneficial to

students with low prior knowledge. The hints turn out to be

well accepted as the distance to correct solution drops

singificantly after the employed hint and then remains

relatively stable. The goal of the hints has a broader intent

than to merely improve the score of the students. When a

student does not know how to proceed, a hint may be

International Journal of Information and Education Technology, Vol. 7, No. 11, November 2017

807

requested, which in turn may propose an alternative solution

path. The students explore the alternative paths, performing

errors while doing so, but also improving their skill set. This

is also why the distance to correct solution for some students,

after receiving a hint, is increased in the subsequent steps.

REFERENCES

[1] J. C. Prior and R. Lister, "The backwash effect on SQL skills

grading," ACM SIGCSE Bulletin, 2004, vol. 36, no. 3, pp. 32-36.

[2] A. Mitrovic, "Learning SQL with a computerized tutor," ACM

SIGCSE Bulletin, 1998, vol. 30, no. 1, pp. 307-311.

[3] A. Mitrovic, S. Ohlsson, and D. K. Barrow, "The effect of positive

feedback in a constraint-based intelligent tutoring system,"

Computers & Education, 2013, vol. 60, no. 1, pp. 264-272.

[4] S. Schiaffino, P. Garcia, and A. Amandi, "ETeacher: Providing

personalized assistance to e-learning students," Computers &

Education, 2008, vol. 51, no. 4, pp. 1744-1754.

[5] T. M. Barnes, J. C. Stamper, L. Lehman, and M. Croy, "A pilot study

on logic proof tutoring using hints generated from historical student

data," in Proc. Educational Data Mining, Montreal, Quebec, Canada,

2008.

[6] G. Stein, A. J. Gonzalez, and C. Barham, ‗Machines that learn and

teach seamlessly," IEEE Transactions on Learning Technologies,

2013, vol. 6, no. 4, pp. 389-402.

[7] C. Kenny and C. Pahl, "Intelligent and adaptive tutoring for active

learning and training environments," Interactive Learning

Environments, 2009, vol. 17, no. 2, pp. 181-195.

[8] D. Arnau, M. Arevalillo-Herraez, and J. A. Gonzalez-Calero,

"Emulating human supervision in an intelligent tutoring system for

arithmetical problem solving," IEEE Transactions on Learning

Technologies, 2014, vol. 7, no. 2, pp. 155-164.

[9] B. S. Bloom, "The 2 Sigma problem: The search for methods of group

instruction as effective as one-to-one tutoring," Educational

Researcher, 1984, vol. 13, no. 6, pp. 4-16.

[10] W. L. Johnson, J. W. Rickel, and J. C. Lester, "Animated pedagogical

agents: Face-to-face interaction in interactive learning environments,"

International Journal of Artificial Intelligence in Education, 2000, vol.

11, pp. 47-78.

[11] U. Ocepek, Z. Bosnić, I. N. Serbec, and J. Rugelj, "Exploring the

relation between learning style models and preferred multimedia

types," Computers & Education, 2013, vol. 69, pp. 343-355.

[12] V. Aleven, B. M. McLaren, and J. Sewall, "Scaling up programming

by demonstration for intelligent tutoring systems development: An

open-access web site for middle school mathematics learning," IEEE

Transactions on Learning Technologies, 2009, vol. 2, no. 2, pp.

64-78.

[13] J. C. Stamper, T. M. Barnes, and M. Croy, "Enhancing the automatic

generation of hints with expert seeding," International Journal of

Artificial Intelligence in Education, 2011, vol. 21, no. 1-2, pp.

153-167.

[14] M. Melia and C. Pahl, "Constraint-based validation of adaptive

e-learning courseware," IEEE Transactions on Learning

Technologies, 2009, vol. 2, no. 1, pp. 37-49.

[15] A. S. Smith-Atakan and A. Blandford, "ML tutor: An application of

machine learning algorithms for an adaptive web-based information

system," International Journal of Artificial Intelligence in Education,

2003, vol. 13, pp. 235-261.

[16] J. R. Anderson et al., "Cognitive tutors: Lessons learned," Journal of

the Learning Sciences, 1995, vol. 4, no. 2, pp. 167-207.

[17] K. R. Koedinger et al., "Intelligent tutoring goes to school in the big

city," International Journal of Artificial Intelligence in Education,

1997, vol. 8, pp. 30-43.

[18] A. Mitrovic, "Modeling domains and students with constraint-based

modeling," Advances in Intelligent Tutoring Systems, 2010, pp. 63-80.

[19] A. Mitrovic et al., "Intelligent tutor for all: The constraint-based

approach," IEEE Intelligent Systems, 2007, vol. 22, no. 4, pp. 38-45.

[20] A. Mitrovic and S. Ohlsson, "Constraint-based knowledge

representation for individualized instruction," Computer Science and

Information Systems, 2006, vol. 3, pp. 1-22.

[21] P. Fournier-Viger et al., "A multiparadigm intelligent tutoring system

for robotic arm training," IEEE Transactions on Learning

Technologies, 2013, vol. 6, no. 4, pp. 364-377.

[22] V. Aleven et al., "A new paradigm for intelligent tutoring systems:

Example-tracing tutors," International Journal of Artificial

Intelligence in Education, 2009, vol. 19, no. 2, pp. 105-154.

[23] L. Razzaq et al., ‗The ASSISTment builder: Supporting the life cycle

of tutoring system content creation," IEEE Transactions on Learning

Technologies, 2009, vol. 2, no. 2, pp. 157-166.

[24] T. J. Parr and R. W. Quong, "ANTLR — A predicated-LL(k) parser

generator," Software-Practice & Experience, 1995, vol. 25, no. 7, pp.

789-810.

[25] K. Zhang and D. Shasha, "Simple fast algorithms for the editing

distance between trees and related problems," SIAM Journal on

Computing, 1989, vol. 18, no. 6, pp. 1245-1262.

Tadej Matek received his BSc degree in 2015 from

the Faculty of Computer and Information Science,

University of Ljubljana. He is currently applying for a

MSc in computer and information science at the same

institution. His research interests include machine

learning, network analysis, intelligent tutoring

systems and data management systems.

Aljaž Zrnec graduated in 1999 and received the

master's degree in 2002 from the Faculty of Computer

and Information Science, University of Ljubljana. He

received his PhD degree in 2006 from the Faculty of

Computer and Information Science, University of

Ljubljana in method engineering.

He works in the Laboratory for data technologies as

a lecturer and assistant in the fields of databases,

information system strategic planning and data integration. His research is

focused on database management systems, methods for plagiarism

detection and intelligent tutoring systems. He is the author or coauthor of

numerous articles in professional and scientific publications.

Dejan Lavbič received his PhD degree in 2010 and is

currently employed at Laboratory for Data

Technologies, Faculty of Computer and Information

Science, University of Ljubljana as Assistant

Professor. His research interests are intelligent agents,

knowledge management, social network analysis,

Semantic Web, Information Quality and Intelligent

tutoring systems. He is a reviewer, member of

program board of several international conferences and author of more than

40 journal papers and papers presented at international conferences.

International Journal of Information and Education Technology, Vol. 7, No. 11, November 2017

808

