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Abstract

Today’s software industry requires individuals who are proficient in as many programming languages as
possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely
used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be
challenging. The need for a computer-aided solution to help users learn SQL and improve their proficiency
is vital. In this study, we present a new approach to help users conceptualize basic building blocks of the
language faster and more efficiently. The adaptive design of the proposed approach aids users in learning
SQL by supporting their own path to the solution and employing successful previous attempts, while not
enforcing the ideal solution provided by the instructor. Furthermore, we perform an empirical evaluation
with 93 participants and demonstrate that the employment of hints is successful, being especially beneficial
for users with lower prior knowledge.
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1 Introduction

Structured query language (SQL) is over three decades old and well-adopted standard, according to ANSI.
Most of today’s computing systems depend on efficient data manipulation and retrieval using SQL. The
industry is in dire need of software developers and database administrators, proficient in SQL. Most of the
SQL language is taught at the undergraduate level of computer science schools and other technical-oriented
institutions. However, a typical student, after completing an introductory course of databases, will not possess
the required SQL skills (Prior and Lister, 2004). The primary reason for this lies in the complexity of the
language itself and in the nature of SQL teaching.

Most typically, the students misinterpret certain concepts of the language, such as data aggregation, joins,
and filtering using predicates. Another common problem is that the students simply forget database schemas,
table and/or attribute names while constructing a query (Mitrovic, 2010). (Prior and Lister, 2004) recognize
in their study that students have difficulties in visualizing the result of their written query, while being graded,
if no option for executing query against the database exists. As a consequence, several SQL teaching systems
now include a visualization of the database schema, along with the tables and attributes required in the
final solution, to help students alleviate the burden of having to remember names. Furthermore, most of the
systems also include the option for testing a query and allow students to receive feedback on their solution.
Such approaches are merely a convenience for the student, but not a solution to help students conceptualize
fundamental parts of the SQL language itself.

Exercises for testing student’s knowledge are usually oriented in a way to check the basic concepts of SQL
language, with students receiving lectures beforehand. But once students have to apply the taught concepts on
their own, the complexity is overwhelming, unless students have had extensive practice. With the emergence

1

http://dx.doi.org/10.1080/10494820.2016.1244084
http://dx.doi.org/10.1080/10494820.2016.1244084
https://www.tandfonline.com/toc/nile20/current


of Intelligent Tutoring Systems (ITS), most computer-aided education systems allow the use of hints to aid
the educational process. Some of these systems were also developed for the SQL domain. However, most
of such systems encode their knowledge manually, using expert solutions for defining rules and constraints.
Therefore, we propose a new system, which is able to offer hints for different steps of the SQL exercise-solving
process and requires minimal intervention from experts, making overall process of defining knowledge base for
solving SQL problems much quicker and easier, as most of the hints are generated automatically, using past
exercise solutions. In addition, our system is able to adapt to the current state the student is in. We also
perform evaluation in an actual educational environment to determine the efficiency of the proposed system.

The rest of this paper is organized as follows. The next section provides an overview of ITS and approaches
for learning SQL. In Section 3, we provide an extensive description of the proposed system with system’s
architecture and the process of hint generation. In Section 4, we perform an empirical evaluation of the
proposed system on a group of 93 participants with diverse prior knowledge of SQL. We conclude and provide
future directions for improving our research in Section 5.

2 Related work

2.1 Review of related approaches

Weak learning in any discipline can be successfully addressed by interaction between students and tutors,
skilled or even not so skilled (Bloom, 1984; Chen et al., 2011; Rothman and Henderson, 2011). Empirical
studies showed that the interactive dialogue that occurs between tutor and the student, and pedagogical
strategies human tutor employs are an essential component of learning (Chi, 2009; Chi et al., 2011; Ezen-Can
and Boyer, 2013; Jeong and Chi, 2007; Lehman et al., 2012). Human tutoring may improve student’s learning
performance by up to two standard deviations (Bloom, 1984; Evens and Michael, 2006). This encouraged
researchers to investigate ways of how computer-based teaching environments could more closely imitate
human tutors and that is what contributed to the emergence of ITS (Arnau et al., 2014; Barnes et al., 2008;
Eugenio et al., 2005; Fossati et al., 2015; Mitrovic, 1998; Mitrovic et al., 2004; Person et al., 2001; VanLehn
et al., 2005), computer systems intended to interact with students and help them learn. Several of these
systems have proved to be effective, although not yet as human tutors (Bloom, 1984; Eugenio et al., 2008;
Evens and Michael, 2006; Mitrovic et al., 2004; Person et al., 2001; VanLehn, 2011; VanLehn et al., 2007).

ITS differ from classical computer-aided learning. They adapt to user’s individual needs in a way that they
recommend educational activities and deliver individual feedback (positive or negative) depending on the
student’s profile, which includes the student’s knowledge or activities within the course they are taking
(Anderson et al., 1995). Through the history of computer-aided learning, many ITS evolved. The most
acclaimed ones are cognitive tutors (Anderson et al., 1995; Kunmar, 2002). Later approaches are based on
either constraint-based modelling (CBM) (Melia and Pahl, 2009; Mitrovic et al., 2013), a philosophy which
helps students to learn from their errors, or they construct student models using machine learning techniques
(Smith-Atakan and Blandford, 2003; Stein et al., 2013) to automate the rule generation in the construction of
ITS.

Cognitive tutors rely on ACT* theory that focuses on memory processes and cognitive modelling (Anderson,
1983). The emphasis of cognitive tutors is on solving procedural problems. They model the problem domain
as a set of production rules, which map out all valid directions for solving the problem. Cognitive tutors are
based on the method of model tracing (Anderson et al., 1995), which means that the system monitors the
student during problem-solving and when they deviate from the right path, the system automatically offers a
hint. Because of the many possible paths for solving particular problem, students are often forced to return
to the correct path. Cognitive tutors are hard to build because they require sophisticated AI programming
skills, they are too restrictive and they may not suit all problem domains. For example, in (Koedinger et al.,
1997), authors estimate that the typical time to author a system is around 10 hours per production. To define
production rules for a domain as complex as SQL, it might take several years to build a useful cognitive
model. Such effort represents a serious obstacle in building tutors for complex domains, although the need is
arguably the greatest out there. For many years, cognitive tutors have been the dominant solution in the field
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of developing ITSs. Despite many new methods developed recently, cognitive tutors remain an important
building block in a computer-aided learning.

The second approach uses CBM, a design philosophy for helping students to learn from their errors (Mitrovic,
2010; Mitrovic et al., 2013, 2007; Mitrovic and Ohlsson, 2006). The basic idea of the approach is that the
individual problem domain is encoded as a collection of constraints, which represent knowledge elements of
the target domain. Constraint-based tutoring system compares the student’s solution to the constraints. If all
constraints are satisfied, then the system treats the solution as correct. Violations of constraints indicate that
the student might be lacking or misunderstanding the principles or concepts being tough. If students violate
specific constraint, the simplest implementation of CBM system provides them a feedback associated with
that constraint. When considering the advantages of CBM, we have to emphasize that implementation of
such ITS does not require any study of student’s errors. Therefore, there is no need to explicitly encode that
kind of errors in the form of rules or sets of misconceptions. A set of important errors is defined implicitly by
specifying the constraints. An important representative of CBM tutoring systems, also in domain of SQL, is
SQL-Tutor (Mitrovic, 1998; Mitrovic et al., 2013). Similar to cognitive tutors, constraint-based tutors are not
easy to build and the feedback they provide could be misleading.

Advances in the field of artificial intelligence contributed to the emergence of machine learning and data
mining. They are very promising techniques used in today’s cognitive and CBM tutoring systems, where
definition of production rules is very time and cost consuming operation (Aleven et al., 2009; Barnes et al.,
2008; Fossati et al., 2015; Stamper et al., 2011). To achieve certain level of usefulness of cognitive tutors
and CBM systems, it is necessary to invest a significant amount of time in defining rules and constraints.
Artificial intelligence methods can be used, to some extent, to automatically generate collections of rules,
assuming we have enough data for specific domain to learn from. The main goal of this approach is to enable
domain experts who are not skilled programmers, to build learning models for ITS systems. Domain experts
define rules describing particular problem domain using programming by demonstration, while the system
independently builds appropriate programme constructs.

Student data logged during learning have also gained importance, because sufficiently a large amount of
quality data enables extraction of useful information, which can be used to build learning system. Using this
kind of approach, former student solutions are processed to build knowledge base for specific domain. For
example, in (Fossati et al., 2009b,a, 2015, 2008), authors introduce iList, intelligent tutoring system that uses
former student data to build knowledge model in the domain of linked lists in computer science. Also, the
authors in (Barnes et al., 2008) introduce Hint factory, intelligent system that uses student data for building
Markov Decision Process (MDP) that represents all student approaches to solving logical problems, and also
uses the MDP to directly generate hints.

2.2 Problem and proposed solution

Both cognitive tutors and CBM systems use static approaches for building problem domain, which means
that in practice these systems can be built only by high-qualified experts who thoroughly understand the
domain and possess adequate programming knowledge and skills (Razzaq et al., 2009; Stamper et al., 2011;
Stein et al., 2013). Using artificial intelligence methods, such as data mining and machine learning, knowledge
base can be built dynamically. Dynamic building of knowledge base eliminates the need for domain experts
and enables teachers to be involved in building intelligent systems in spite of their lack of understanding how
these systems work. If we use the domain model based on historical data, we get the opportunity to map
student’s solution to valid historical data of their colleagues, enabling the system to support all or at least
several most common paths of solving the specific problem.

The basis of our system for learning SQL is historical data – past student attempts at solving SQL-related
exercises. We make use of the information within the data itself to remove the need for an expert to encode
the solutions by hand. One of the benefits of our system is that it builds its knowledge base automatically
with no intervention of a human at all. Students are given hints based on the correct solutions of their
colleagues from previous years. In addition, the system is able to adapt to the student’s path of solving
the problem and offers a hint precisely for the current student’s solution, rather than produce a general,
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undirected hint. A vital component of the system is artificial intelligence, which performs state exploration
until the best state is found and which constructs the knowledge base using past attempts. Our approach is
similar to the approach used in iList [fossati_data_2015] and Hint factory (Barnes et al., 2008), two solutions
that generate knowledge base with several MDPs initially built from past student’s solutions, which are later
used to provide students with hints. In contrast to iList and Hint factory, we focus on a very complex SQL
domain and define hints as partial solutions of the problem, which act as a hint for the next step a student
should take.

3 Recommender system

3.1 Description of proposed system

We propose a system with intention of helping students solve SQL-related exercises. The system is an extension
of a component used in an existing curriculum (Introduction to databases) at University of Ljubljana, Faculty
of Computer and Information Science, where students also learn how to formulate correct and efficient SQL
queries. The existing component merely automatically evaluates the correctness of a student’s solution by
comparing the result set of the student’s query against the result set of an ideal solution (instructor’s solution).
Points are then deducted if certain rows or columns are missing from the result matrix or if the order of
rows is incorrect. Our system (presented in Figure 1) involves the application of hints as a part of student’s
problem-solving process. Each student may request multiple hints, provided that the solution given by the
student is not empty. The goal of the hint is to either supplement the student’s solution in cases when the
student is on the right path, but does not know how to continue, or to offer a new partial solution in cases
when the student is moving away from the correct solution. Students have the option to replace their query
with the one from the hint or to ignore the hint altogether. The system therefore acts as a query formulator,
correcting students’ queries when requested. Hints are formed using solutions from the previous generations
of students. The solutions were collected during years 2012 and 2014 in a process of evaluating student’s SQL
skills. Overall the solution pool contained over 30.000 entries spread across approximately 60 exercises and 2
different database schemas (including the well-known northwind database). Each entry was described with
the query in plain text format, the final score of the query, user, schema, exercise id and time.

Figure 1 depicts all three major perspectives of the system – the teacher’s view, the student’s view and the
system’s view. The process of SQL learning starts with an instructor preparing the exercises to be used for
evaluation (assignment formulation). The evaluation rules and ideal solutions need to be provided along with
a description of the task and with a representative image of the database schema. Evaluation rules determine
the type of scoring used for each exercise, as some exercises may require the student to return rows in a
specific order, to name columns in a specific way, etc. Ideal solutions are necessary since exercises may not
have matching past (correct) solutions to rely on for hint generation. They also help address the cold-start
problem mentioned later on. In our evaluation, exercises were formulated with unambiguity in mind, that
is, there is a single unique result matrix for every exercise, which is 100% correct. Several ideal solutions
were provided per exercise, each returning the same ideal result matrix, but using a different concept of data
retrieval (e.g. joining multiple tables, aggregating data and nesting queries). In the second stage, the students
solve SQL exercises. Their actions are recorded and their solutions used as data for future generations of
hint consumers. During the course of exercise-solving process, the students have the option to test the query
and receive the result matrix or to request a hint, which then augments their solution. Once satisfied, the
students submit their solution as final.

The basis of the system’s perspective is a set of past attempts (queries) at solving SQL exercises, provided
by the students from earlier generations. The historical data contain enough information to create a model,
which is capable of generating useful hints. The system utilizes MDPs to model the learning process. MDP is
defined as a tuple

〈S,A,P,R, γ〉 (1)
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Figure 1: Architecture of proposed recommender system from user and system perspective
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Figure 2: Example of solution steps construction

where S is a finite set of states, A a finite set of actions connecting the states, P a matrix of transition
probabilities, R a reward function and γ a discount factor. The system’s behaviour is stochastic, that is, the
probability matrix defines, for each action, the probability that this action will actually lead to the desired
state. The actions therefore have multiple destinations, with each destination being reachable with a given
probability. The reward function specifies, for each state, the reward the agent receives upon reaching this
state. Note that the reward can also act as a punishment (negative values). Furthermore, a policy π defines a
mapping of states to actions. Each policy completely defines the behaviour of an agent in the system as it
specifies which action the agent should take next, given the current state. We can define a value function as

V π(s) =
∑
s′

Pss′(Rs + γV π(s′)) (2)

The goal of MDPs is to find an optimal policy, which maximizes the value function – the reward the agent
receives in the future – over all policies, or equivalently V ∗(s) = max

π
(V π(s)). We use value iteration to

iteratively compute better estimations of the value function for each state until convergence

V ∗i+1(s) = max
a∈A

(
Rs + γ

∑
s′

Pass′V ∗i (s′)
)

(3)

The value iteration computes, for each state, its new value, given the outgoing actions of the state. The
new value of the current state is its baseline reward (Rs) plus the maximum contribution among all actions
leading to neighbours. A contribution from following a specific action is equal to the weighted sum of the
probability of reaching the action’s intended target and the value of the target (neighbour) from the previous
iteration. The discount factor gives priority to either immediate or long-term rewards. Observing equation
(3), we can notice that when γ is low, the contributions from neighbouring states drop with increasing number
of iterations.

Our historical data contain just the timestamp, user identification code and submitted SQL query in plain
text format. In order to close the gap between raw data and high-level MDP states, we constructed our
own version of SQL language parser (component A3 in Figure 1). The tool that proved useful was ANother
Tool for Language Recognition (ANTLR) (Parr and Quong, 1995). ANTLR takes as an input the grammar,
which defines a specific language (a subset of context-free languages is supported by ANTLR), and generates
parsing code (Java code in our case). Through the use of grammar and lexer rules, a parser was constructed
that converts plain text SQL query into a tree-like structure. An example of query parsing is evident from
Figure 2, where internal tree nodes represent expressions and leaves represent the actual (terminal) symbols
of the query.

The individual solution steps, such as in Figure 2, are then directly mapped to states in MDP notation.
A single MDP state is therefore a tree. Actions are added among consecutive solution steps while making
sure there are no duplicate states. We simplify the MDP construction by allowing each state to have only
one outgoing action, however that action leads to multiple states. The probability matrix is calculated as
the relative frequency of users that have moved from a certain state to another with regard to all users.
The rewards are set only for the final states, that is, the states that represent the final step of the solution.
Reward function is defined using the existing query evaluation component (component A4 in Figure 1). When
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Figure 3: Example of MDP graph. The numbers next to the states represent the rewards. The final states
are in this case states with rewards 100, −100, 90 and 55

the query score is high (> 95%), the state receives a high reward. In all other cases, the state receives a
“negative reward”. This is to prevent offering hints, which are only partially correct. The discount factor was
set to 1, 0, giving priority to long-term rewards. In addition, we add backward actions to all states, to aid the
students when they happen to be on the wrong path. Backward actions allow the system to return from
an incorrect solution path when the reward of taking the forward action is worse than the reward of taking
the backward action. Furthermore, we seed the MDP with ideal solutions to improve the hint generation
process (component A2 in Figure 2). This partially solves the cold-start problem of new exercises, which do
not yet have historical data available for hints, as it allows the students to receive hints leading them to one
of the ideal solutions. The resulting MDP is a graph (not necessarily connected). An example of such graph
is visible in Figure 3.

Let a branch denote one of the paths in one of the connected components of MDP graph, which starts
with the first solution step and ends with a final solution. A single branch represents how a single student
constructed the solution. When a branch is split, that is, when at a given node of the path/branch, that
node leads to multiple other states, then from this point forward, students deviated with their approach
to solving this exercise. In cases when the agent is located in an incorrect sub-branch (a path leading to a
final incorrect state), the system returns from the incorrect subbranch to the first common ancestor state of
both the incorrect sub-branch and an alternative correct branch. Skipping the entire incorrect sub-branch is
necessary in order to ensure that hints are progressive. For example, in Figure 3, if an agent was located in a
state corresponding to the use of IN clause (state with reward −100 in Figure 3), the system would return
two steps back and then offer a hint from there.

The hint generation process consists of the following activities (see Figure 1). When a student requests a hint,
the system accepts the current student’s query as the input in order to match it with one of the states in the
MDP graph. The student’s query is parsed into a tree structure and then matched to the most similar state
(solution step) in the MDP (component A5 in Figure 1). The MDP must be constructed first and because
this process is resource intensive (database I/O), we use an in-memory cache (component A7 in Figure 1)
to store MDPs for each exercise. After the MDP is constructed, we apply value iteration to determine the
rewards of remaining, non-final states. Once the MDP is retrieved and the matching state found, the hint is
constructed using the next best state given the matching state. This includes converting the solution step
into a text representation. An example of hint construction is visible in Table 1. The first row of Table 1
corresponds to a scenario, where the student is located in an incorrect MDP branch. Observe that the system
does not direct the student towards the ideal solution (one of the ideal solutions actually), but proposes
an alternative MDP branch, which eventually leads to the correct solution. The alternative MDP branch
was constructed by another student’s solution from the previous generation. The last hint in the first row
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Table 1: Example of constructed hints for specific exercises, given student’s solution
Task description Ideal solution Student’s solution Hints
Return the number of
employees in
department "SALES"

SELECT COUNT(*)
FROM employee,
department WHERE
employee.dept_ID =
department.dept_ID
AND department.name
= "SALES"

SELECT * FROM
department

SELECT COUNT(*)
FROM department
WHERE dept_ID
SELECT COUNT(*)
FROM department
WHERE dept_ID IN
(SELECT dept_ID)

Return the number of
employees in region
"DALLAS"

SELECT COUNT(*)
FROM employee e,
department d, location l
WHERE e.dept_ID =
d.dept_ID AND
d.loc_ID = l.loc_ID
AND region =
"DALLAS" GROUP
BY region

SELECT
COUNT(e.emp_ID)
FROM employee e,
location l WHERE
region = "DALLAS"

SELECT
COUNT(e.emp_ID)
FROM employee e,
location l, department d

demonstrates that nested queries are also supported. The second row of Table 1 corresponds to a scenario,
where the student’s solution is partially correct, yet the student fails to continue. As one can observe, the
student forgot to include the department table, which is what the hint corrects. A visual example of how the
hints are presented can be seen in Figure 4.

So far we have not mentioned how is the state matching actually performed. Because all SQL queries are
represented using tree structures, we perform the matching using a tree distance criterion. More specifically
we employ the Zhang–Shasha algorithm (Zhang and Shasha, 1989), which performs tree distance calculation
for ordered trees. There are several improvements we had to consider to make the distance metric feasible.
The SQL queries mostly contain aliases, which help the user distinguish two instances of the same table.
Because aliases do not follow any syntax, they usually differ from user to user, thus increasing the distance
between trees. To alleviate the problem, we perform alias renaming before matching the states. The process
renames all aliases to a common name, improving matching. In addition, the Zhang–Shasha algorithm
only performs distance calculation for ordered trees. SQL queries are represented using unordered trees,
as the order of, for example, selected tables is irrelevant with respect to the final solution. Tree distance
for unordered trees is known to be an NP-hard problem. Because trees representing queries are relatively
small, we are able to perform unordered tree distance calculation by treating children of certain nodes as
unordered sets and then defining a distance metric for comparing the sets. The set distance calculation
involves recursively calculating the tree distance for each pair of elements from both sets.

3.2 Limitations

The strict matching of tree structures may in some scenarios cause problems. Several small changes to
the query can reduce the system’s ability to find a matching state and offer a hint. Even though we have
implemented several additional mechanisms to alleviate the problem (alias renaming, unordered matching)
there are still certain issues due to inputs not following a specific syntax. A simple example is attribute
renaming (AS keyword), for exercises where the output needs to follow specific naming rules. In general, we
need to handle all cases of free-form user input.

Another limitation of the system is the fact that all hints strictly follow a predefined order of query construction.
This is due to the lack of solution steps and our assumption that students construct their query in order of
sections (SELECT clause first, then FROM clause, etc.). The system, as a result, does not support hint delivery
for arbitrary order of query construction. Instead, the students are expected to construct their queries by the
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Figure 4: Recommender system’s user interface
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sections of the query.

A potential problem is also the low reward of a certain state even though the state might be a part of the
correct solution path. The case when a lot of students moved from a correct state to an incorrect path (when
there is an action with high probability leading to a state with low reward) is reflected directly in the system’s
ability to offer a hint. Such state will also have a low reward after value iteration even though it is a part of a
correct path. However, it is also a part of the incorrect path and is more likely to lead to incorrect solutions.
The hints will, because of this, lead to other paths, leaving this state unexplored.

All of the mentioned limitations do not have a major impact on the learning outcome of the system and
its ability to deliver hints. As we show in the next section, the effectiveness of the system is more than
satisfactory.

4 Evaluation

4.1 Method

The recommender system was implemented as a web application that participants accessed using one of the
modern web browsers. The process of providing hints during solving the SQL assignments was evaluated on
a group of 93 participants, where each of them completed 3 assignments, resulting in 279 solutions.

During the experiment, before participants started working on assignments, they provided some information
about their prior knowledge (SQL proficiency level, years of experience in SQL) to enable clustering and
detailed analysis of participants. To obtain diversity of participants’ prior knowledge we employed 60
undergraduate students at University of Ljubljana, Faculty of Computer and Information Science with
right-skewed prior knowledge and 33 more experienced participants in using SQL with left-skewed prior
knowledge, resulting in a nearly normal distribution of participants’ prior knowledge (self-reported SQL
proficiency and years of experience).

All of the participants’ actions on the web site were recorded for further analysis of the system employment.
That allowed us to analyse participant’s time spent on reading instructions, solving the assignment, time
spent out of focus with the main window of the assignment and the number of lost focuses. Furthermore,
partial query results, distance to correct solution, number of branches and if participant is in the MDP
branch, corresponding to a correct solution path were also recorded to construct the participant timeline in
solving individual assignment.

Each participant was required to provide a solution to three randomly selected SQL assignments. Each of the
assignments was classified into a category based on the difficulty level, where every participant was randomly
allocated one easy (selection of attributes from one table and filtering with simple predicates), one moderate
(using join to merge data from multiple tables and filtering with more advanced predicates) and one difficult
(using nested queries, grouping and aggregation functions) assignment.

As Figure 4 depicts, every assignment consisted of instructions, a graphical view of the conceptual model, a
query box for entering the solution, an optional hint box and interactive results of the user’s query.

Participants generally first enter a query into the user’s query box and interactively evaluate the results
by pressing the “Execute query”" button. At some point, if the participants were unable to continue, they
requested a hint from the recommender system, which was then displayed next to the user query with
indicated adaptations of the current query (added elements in green colour and removed elements in red
colour) (see Figure 4). If participants found the hint beneficial, they could instantly employ it by clicking the
“Use hint” button. Then the participant could again check the results of their current query by executing it.
When one was satisfied with the result, they could continue to the next assignment. If hints were employed,
then the participant indicated the level of suitability of provided hints in additional questionnaire.

Additionally, the group of 60 undergraduate students were presented with a direct encouragement - their
final result (average score of three random assignments) was considered as a part of study obligations of their
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degree programme, while 33 more experienced participants were only asked to participate for the evaluation
purposes.

Every participant could request unlimited number of hints per assignments. To discourage participants to
excessive use of hints or even solving the complete assignment with hints only, a small score penalty (inversely
proportional to assignment complexity) was introduced for hint employment, which was clearly introduced to
the participants before starting the evaluation.

After outlier detecion based on recorded time (instructions reading, solving and unfocussed) and observation
of participant’s timelines, 37 attempts were excluded from the initial data set. Further analysis of our results
was conducted on 242 attempts, where we observed the following assignment solving dynamics (including
95% bootstrapped confidence intervals). The mean time participants spent on reading the assignment’s
instructions was 9s [7s, 10s], while the mean time spent on solving the assignment was 268s [242s, 294s].
The mean number of requested hints per assignment was 1, 43 [1, 08, 1, 82], while 82 out of 242 (33, 88%)
assignments was solved using at least one hint.

4.2 Results and discussion

To evaluate the performance of proposed recommender system, we cluster participants into five segments,
based on prior knowledge and feedback on hint usefulness:

• Segment I: attempts of knowledgeable participants without employing hints,
• Segment II: attempts of not knowledgeable participants without employing hints,
• Segment III: attempts of not knowledgeable participants, not finding hints useful,
• Segment IV: attempts of knowledgeable participants, finding hints useful and
• Segment V: attempts of not knowledgeable participants, finding hints useful.

When observing an individual participant in solving a given assignment, several actions are recorded
(e.g. altering current solution, executing query, requesting a hint, employing a hint, losing a focus of the
current window with the assignment, etc.). With evaluation of the proposed recommender system, we focus
mainly on the distance from the correct solution distsol in a given time. The distsol is defined as the
minimum number of solution steps required reaching the correct state in the MDP graph, given a current
state. The metric is calculated using a simple distance criterion, where states are treated as nodes in a graph
and actions as links between states. The breadth-first traversal is used to determine the shortest distances
and the minimum of all distances is taken.

We define a linear association

d̂istsol = α+ βtype · t̂elapsed (4)

where d̂istsol = distsol

‖distsol‖ , t̂elapsed = telapsed

‖telapsed‖ and type ∈ (all, pre_first_hint, post_first_hint, af-
ter_hint_avg).

When analysing the results, we focus on the following performance indicators:

• participant’s solving time per assignment,
• number of different branches participant encounters per assignment and
• various regression coefficients of participant timeline, when solving the given assignment:

– βall is based on all participant’s actions,
– βpre_first_hint or βpre_fh is based on actions before the first hint employment,
– βpost_first_hint or βpost_fh is based on actions after the first hint employment and
– βafter_hint_avg or βaha is based on consequent actions after each hint employment, with an average

over all hint requests.

The following Table 2 depicts aggregated mean results per predefined five participants’ segments. When
examining the results, we endeavour to obtain as negative b values as possible, which indicate rapid
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Table 2: Participant segmentation
Segment Prior

knowledge
Hints
useful

tsolving nbranches βpre_fh βaha ∆β

I Knowledgeable – 228, 00 3, 88 – – –
II Not knowl-

edgeable
– 254, 17 4, 44 – – –

III Not knowl-
edgeable

No 381, 76 4, 65 −0, 47 −5, 67 −5, 20

IV Knowledgeable Yes 243, 00 3, 60 −2, 00 −6, 36 −4, 27
V Not knowl-

edgeable
Yes 322, 80 4, 42 −0, 85 −10, 76 −9, 89

Figure 5: Degree of convergence to the final solution β

advancement towards correct solution (e.g. minimize distance to correct solution over time) and by doing
that measure the effect of hint employment.

When observing regression coefficients of participant timeline or the degree of convergence to the final
solution, we focus on βpre_first_hint, βafter_hint_avg and ∆β = βafter_hint_avg − βpre_first_hint to measure
the impact of hint employment. The aforementioned metrics can be calculated only for segments III, IV and
V, as participants from segments I and II did not employ hints (see Table 2).

Figure 5 depicts a sharp decline in the degree of convergence to the final solution β before and after the
hint employment for all segments of participants that employed hints (III, IV and V). The finding is also
statistically confirmed by Mann–Whitney–Wilcoxon test for individual segments:

• βIIIafter_hint_avg = −5, 67 < βIIIpre_first_hint = −0, 47 with W III = 73 and pIII = 7, 2× 10−3,
• βIVafter_hint_avg = −6, 36 < βIVpre_first_hint = −2, 00 with W IV = 60 and pIV = 2, 6× 10−2 and
• βVafter_hint_avg = −10, 75 < βVpre_first_hint = −0, 85 with WV = 468 and pV = 9, 8× 10−8.

We can conclude that the hint, provided by the recommender system, is statistically significant in terms of
the impact on the degree of convergence to the final solution as βafter_hint_avg values of all three segments
are significantly lower than βpre_first_hint.

When considering the magnitude of hint employment impact from Figure 5, we can observe ∆β =
βafter_hint_avg − βpre_first_hint in Figure 6. The results show that participants in segments V, III and IV
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Figure 6: Impact of hint employment

respectively found the provided hints most beneficial. The biggest impact of hint employment on the degree
of convergence to the final solution Db can be observed in not knowledgeable participants, finding hints useful
(segment IV), which is what was also expected prior evaluation, under assumption that the recommender
system would be effective. Similar effects can be observed with knowledgeable participants, finding hints
useful (segment V), but the effect size is lower, but still significant. More intriguing finding is that the
positive impact of hints employment can also be observed in not knowledgeable participants, not finding
hints useful (segment III). Even though participants indicated that hints are not useful, the results show
that their advancement towards correct solution, after employing hints was significantly better than before
employing hints.

To examine the impact of prior knowledge, even further we studied the impact of prior knowledge in hint
employment considering assignment solving time (tsolving) and number of different branches (nbranches) in
Figure 7. Assignment solving time includes only time designated to solving (without instructions reading
time and unfocussed time), while number of different branches defines the number of branches participant
was designated for in MDP, when solving the SQL assignment. The higher values of nbranches indicate
participant exploring significantly different paths to the correct solution and usually not knowing how to
continue.

Figure 7 depicts that we can, based on tsolving and nbranches, cluster together segments I and IV (knowledgeable
participants) and segments II, III and V (not knowledgeable participants). The general observation is that
knowledgeable participants on average tend to spend less time solving SQL assignments, and are related to
lower number of branches than not knowledgeable participants. The arrows in Figure 7 indicate the influence
of hint employment. We can observe that when knowledgeable participants (segments I an IV) employ hints,
tsolving increases but the nbranches decreases, indicating that the number of different paths to the correct
solution drops, resulting in more consistent progressing towards final solution. In case of not knowledgeable
participants (segments II, III and V), the impact of hints increases tsolving, while nbranches slightly decreases
when participants find hints useful (segment V) and increases when participants do not find hints useful
(segment III).

To further investigate the differences between five segments of participants, Figure 8 details the most
representational participant of every cluster segment that is the most similar to the median values of the
characteristics of performance indications tsolving, nbranches, βpre_first_hint, βafter_hint_avg and ∆β. Figure
8 depicts the timeline of representational participant solving the assignment with every recorded action,
where hint employment is highlighted (blue dots). Additionally, three regression lines and coefficients are also
depicted, based on the following filtering:
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Figure 7: Impact of prior knowledge in hint employment

• βall for all actions,
• βpre_first_hint for actions before first hint employment and
• βpost_first_hint for actions after the first hint employment.

When considering segment I (knowledgeable participants without employing hints) and segment II (not
knowledgeable participants without employing hints), we can observe that both groups did not employ hints,
hence only ball is depicted. The average participant in segment II is not knowledgeable and he experienced
more fluctuations in his path to the final solution than knowledgeable participant in segment I.

When observing participants in segment III (not knowledgeable participants, not finding hints useful), we can
conclude that the average participant is able to solve the SQL assignment to certain degree, but then does
not know how to continue. At that point, the participant starts requesting hints, which he/she does not find
useful. Nevertheless, the hints still lead participant’s current solution to the correct final solution that is the
most similar to his/her previous steps in the attempt.

We would like to emphasize attempts in segment IV (knowledgeable participants, finding hints useful)
and segment V (not knowledgeable participants, finding hints useful) that both include attempts where
participants found hints useful and recommender system provides the most beneficial results, as the impact
of hint employment is evident. The average knowledgeable participant from segment IV is able to solve the
SQL assignment but is at some points uncertain whether he/she is on the correct path. In that case he/she
employs hints, which confirm his/her previous steps and guide him/her to the correct final solution. The
average not knowledgeable participant from segment V is at some point unable to continue and after hint
employment he/she experience the boost in terms of rapid decline of a distance to correct solution d̂istsol.

5 Conclusions and future work

In this study, we set out to construct a system to help students learn SQL. The system makes use of past
student attempts at solving SQL-related exercises. We employed MDPs to encode the knowledge from
historical data and to traverse the states to find the most suitable hint. We parse the SQL language and
generate the solution steps in order to close the gap between raw queries and MDP states. We also seed the
system with additional expert solutions to improve our ability to deliver a hint.

We tested our system in an actual learning environment. The results indicate that the hints are well accepted
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Figure 8: Medoids of participant’s timeline
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and drastically reduce the distance to correct solution even after several steps upon using the hint. If a
student’s distance to correct solution alternates before requesting a hint, it is more stable after receiving a
hint. The goal of the hints is not merely to improve the overall score of the student, but has a broader intent.
If a student does not know how to proceed, they receive a hint, which in turn proposes a new approach to
solving a problem. The students therefore explore alternative paths, which they would not consider on their
own. This is also why initially, after receiving a hint, some students still alternate with regard to the distance
to correct solution, as they are exploring the unfamiliar states and perform errors doing so. As expected, the
system has the largest impact on students with low prior knowledge, which is desired.

Our system would benefit from certain improvements in the future. An obvious improvement might be to
perform matching of the states not through comparison of tree structures, but rather using a more high-level
approach. We could, for example, detect key concepts from every query and then count the number of
common concepts whilst comparing two queries. This would also allow discarding any free-form user input
from comparison. Another improvement we will consider in the future is to abandon the assumption that the
students solve the problems by the order of sections of the query. In order to do that, we would first have
to gather new historical data, which also contains steps of query construction. Afterwards, hints could be
employed for an arbitrary query construction permutation.
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