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Abstract—Relational database to ontology mapping and ontol-
ogy matching techniques are mostly addressed separately, even
though it is known that the real power of semantic data lies
in data interconnection. The latter is especially important when
designing a new ontology, which often includes at least some of the
concepts that already exist in the linked open data cloud. Thus,
in this paper we describe a new end-to-end tool LogMap+ for
transformation of relational data into an ontology and matching
it against a pre-existent semantic source. Apart from offering
the efficient web-based application, the main contributions are
the improvements of the domain specific LogMap system. We
evaluate our general tool against OAEI 2014 challenge datasets
and achieve comparable results to the top performing algorithms
and also outperform the domain specific LogMap tool.

Keywords—Ontology mapping, ontology matching, relational
database, OAEI.

I. INTRODUCTION

The concept of hyperlinks as we know it from the Inter-
net was first coined in 1945, when Vannevar Bush defined
interconnection of distant but semantically connected data in
his article “As We May Think” [1]. The World Wide Web
today consists of a huge amount of documents, which are
indexed by search engine providers but they are still not
searchable using semantic queries as Semantic Web documents
could be. Organizations also often store their data within the
relational databases, which are used by specialized applications
and therefore not open (even though some could be) or
interconnected to semantically close concepts in other data
stores.

On the other hand, there exists a cloud of linked open data,
which is easily accessible and can be interconnected with new
or existing semantic sources. Thus, we propose an end-to-end
tool LogMap+, which offers a mapping of a selected relational
database schema into an ontology and then matching it against
a pre-existent semantic source.

Ontology matching is an important operation during an
ontology design as the whole linked data cloud is well
connected and heterogeneus [2]. The principle of connecting
multiple ontologies is also practically useful as it allows
(1) to design smaller and self-sufficient modules instead of
large ontologies, (2) to express relationships between multiple
versions of the same ontology, and (3) more efficient design
of a general ontology with relationships to more (domain-
)specific ontologies.

To evaluate ontology matching techniques, Ontology
Alignment Evaluation Initiative (OAEI) organizes regular eval-
uations since 2004. The goal of the initiative is to define
guidelines for development of successful ontology matching
systems and algorithms in different domains.

The paper is structured as follows. In the next section
we review the related work for the relational database to an
ontology mapping and overview ontology matching tools. Then
in Sec. III we describe our end-to-end LogMap+ tool and
explain the improvements in the part, where we use LogMap.
We separately evaluate the whole tool against a use case
scenario and the improved version of LogMap against the
OAEI 2014 challenge datasets in Sec. IV. We conclude with
the discussion of the proposed solution.

II. RELATED WORK

To our knowledge, there exist no previous work that would
focus on both mapping relational data to an ontology and
matching it to existing linked data sources because also in
practice the mapping is already a big challenge. Still, there has
been a lot of research done for each of the tasks separately.

The task of mapping relational databases to an ontology
(RDF/OWL) format is nowadays well understood and widely
studied. Some of the RDB-to-RDF/OWL mapping languages
and tools are D2RQ [3], Virtuoso RDF Graphs [4], Ultra-
wrap [5], RDB2OWL Lite [6] and W3C standardized language
R2RML [7]. Most of the mapping languages and approaches,
however concentrate most on clear mapping structure and
efficient implementation with less attention paid to the concise
mapping writing possibility suitable both for manual mapping
information creation and using of the mapping information as
semantic-level documentation of the relational database struc-
ture. There are more higher-level mapping definition means in
ontop [8], where the mappings are described as separate arti-
facts to be considered besides both the database and ontology
structures. Authors of the RDB2OWL language [9] have shown
a principal possibility of reusing both the target ontology and
source database structures in the mapping definition via placing
the mapping information in a compact textual form into the
annotations of the target ontology entities. In our work, we
decided to use R2RML because among other features it enables
the user to easily adapt the mapping document, it allows the
incorporation of definition of multiple logic tables and also a
representation of a logic table using an SQL statement.

After we transform the database into an ontology, we
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need to enrich it. The latter can be achieved using ontology
matching technique, which is a process of entity alignment
among different ontologies [2]. Interconnected ontologies are
of great importance in the linked data field, so we build on
the top of successful approaches. Rahm and Bernstein have
first published a classification of the existing approaches [10],
which is still valid. First they separate individual matcher
approaches and combining matchers. The individual ones are
based on the matching objects, that can be schemas only or
instances/contents of the ontology. The combining matchers on
the other hand can use a composition different approaches and
therefore achieve better performance. The most recent classi-
fication (Fig. 1) was provided by Euzenat and Shvaiko [2],
who list known techniques that have been used for ontology
matching and classify them from the perspective of kind of
input and its representation.
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Fig. 1. Classification of basic techniques for ontology matching.

At the time of writing this paper, we found 89 tools for
ontology matching. We further classify them into tools that
work based on schemas or instances as matching objects
or combine both of the approaches (Fig. 2). Among all the
tools we decided to use Logic-based and Scalable Ontology
Matching (LogMap) [11] because it already features semantic
matching based on the ontology structure, returns also the
negative matchings, allows for semi-automatic matching, so
the user can be actively involved during the runtime and is
open-source, so we could easily implement additional features.

III. LOGMAP+

The end-to-end relational data enrichment and linked data
resources tool LogMap+ (Fig. 3) is a novel tool that enables
automatic SQL-based data into RDF format transformation and
enrichment with existing linked data sources. In the first part
we propose an approach of how to efficiently use relational
data schema and instances to build a new ontology and then in
the second part we improve the existing LogMap tool to allow
for a more general ontology matching. LogMap+ therefore
introduces the following improvements over LogMap:

• The use of multilinugal lemmatization tool for trans-
formation of strings into a basic form. In the imple-
mentation we use Lemmagen1 tool.

1http://lemmatise.ijs.si
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Fig. 2. An overview of existing tools for ontology matching. On the left we
show 47 tools that are based on schema matching, on the right we show 15
tools that are based on instance matching and in the middle we list 27 tools
that combine both approaches.

• Incorporation of string variantions into the index. We
use WordNet to retrieve synonyms, antonyms, etc.

• Implementation of supporting elements property. We
use a special property for a representation of neigh-
bouring tables when mapping from an SQL database
to an ontology before matching. Supporting classes
represent additional context in our new matching step.

• Implementation of matching using context. We define
a new relational metric that takes lexical and contex-
tual matching into account.

A. Relational data to linked open data mapping

In short, we design the mapping from a relational data
to a new ontology using the following steps: (1) selection
of an SQL database to map, (2) definition of appropriate
support classes to improve the enrichment in the second part,
(2) selection of two representative tables (first and last) that
include data to map, (3) selection of an appropriate path
between the tables that can contain additional data for a new
RDF class, and (4) naming of the concepts in a new ontology.

To map data from a relational database, a user needs first
to select data for enrichment. The relational data of interest
is defined by the two database tables and a number of paths
between them. A user selects one of the possible paths and
all the attributes he wants to map into an ontology class. The
whole process of mapping a relational data resource to an RDF
class is represented in Fig. 4.

After the credentials to a relational database are given,
we use SchemaSpy2 tool to represent an entity-relationship
diagram. We transform the diagram into a directed graph
G = (T, F ), where tables are represented as nodes T =
T1, T2, . . . , Tn and foreign key constraints between tables
F = F1, F2, . . . , Fm are mapped to directed links. Each
foreign key Fx = (Ta, Tb) represents a directed link. We build
the graph using the following rules [12]:

• Tx ∈ T is dependent on table Ty ∈ T if and only if a
walk exists between Tx and Ty ,

2http://schemaspy.sourceforge.net
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Fig. 3. LogMap+: End-to-end process of relational data mapping and ontology matching.
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• Tx ∈ T is directly dependent on table Ty ∈ T if and
only if there exists Fx ∈ F , where Fx ∈ (Tx, Ty),

• Tx ∈ T is indepedent on table Ty ∈ T if and only if
a walk does not exist between Tx and Ty ,

• Tx ∈ T is dependent on itself if and only if there
exists a directed cycle in the graph G that includes
the node Tx.

From a graph G, a user selects two tables, which he would
like to map to an RDF format. To retrieve all sensible attributes
to a new RDF class, we find all possible paths between the
two tables in the graph. We use a variant of breadth-first search
algorithm, which returns the paths sorted by their length. We
show the algorithm in Alg. (1). After a user selects one of the
paths, he can further select all the attributes from the tables
on the path to form a new RDF class definition.

Then, we automatically create a mapping document of
schema and data from a relational database to RDF triples. The
process is shown in Fig. 5. According to the selected relational
subschema, we generate a R2RML mapping document, which
a user can further manually adapt for special cases if needed. In
the next step we use db2triples3 tool, which can convert data

3https://github.com/antidot/db2triples

Algorithm 1 Calculate paths in ascending order

Input: G, Tstart ∈ G, Tgoal ∈ G
Output: Ordered paths from Tstart to Tgoal

function BFS(G, Tstart, Tgoal)
R ⇐ [ ] //list of found paths
Q ⇐ [ [Tstart] ] //current paths
while Q is not empty do

P ⇐ first element in Q
Ttemp ⇐ last element in P
for all Tn ∈ children(Ttemp) do

if Tn == Tgoal then
R+ = (P ++[Tn])

else
Q+ = (P ++[Tn])

end if
end for

end while
return R

end function

to RDF triples according to a R2RML mapping document.
The tool was selected because it can handle the mapping
directly using SQL statements that can be manually fine tuned
by a user [13]. Relational database schemas include a lot
of metadata, which we also map in order to improve data
enrichment for ontology matching in further steps. At the end
of this step we store triples directly into an RDF database (i.e.,
Apache Fuseki), which enables SPARQL querying.

B. Ontology matching

In this section we propose an improved algorithm of
LogMap for ontology matching, which we use for RDF data
enrichment. In the first part we explain the specifics of the
LogMap tool and then describe our improvements in the
LogMap+ tool. The general idea of ontology matching process

269

https://github.com/antidot/db2triples


R
D

F
 t

o
 R

D
F
 m

a
p

p
in

g

Fuseki 

Triplestore 

server

RDB

SPARQL query

DB2Triples parser – 
schema and 

instance mapping

Generation and 

editing of a R2RML 

mapping document

R2RML document

Users can edit the R2RML 

mapping document also 

manually

Fig. 5. Process of a relational schema and data mapping to RDF triples.

is represented in Fig. 6. A user needs to select two ontologies
for matching. Depending on a matching tool, it can also allow
for different parameters setting or specific rules definition.
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1) LogMap ontology matching: LogMap is a scalable tool
for ontology matching, which can operate with semantically
rich ontologies consisting of a few millions of RDF triples. It
supports also property and instance matching. The incorporated
reasoning functionality allows for inconsistency identification
within the matched ontology. Fig. 7 shows the LogMap’s
process for matching ontologies, which takes ontologies O1

and O2 as input and returns positive (M ) and negative (M ′)
matches.

In the first step LogMap indexes lexical elements and the
structure of input ontologies. It indexes data using inverted
indexes for classes and instances. For the indexing it uses
stems and alternative strings (e.g., synonyms, hyponyms) that it
retrieves from UMLS [14] database. For the structure indexing
it creates a hierarchy of classes for each input ontology. They
are indexed using interval labeling schema [15], which enables
simple querying against relationships among them.

In the second step it calculates a set of initial matchings
by taking the intersection of inverted indexes from both input
ontologies. The matchings are further checked using Stoilos’
string similarity metric [16] and local trust metric [11]. The
trust metric is used only for classes matching and not for
instances, so therefore LogMap does not take context data into
account.

The next step is an iterative loop of matchings update &
search. The loop executes until there are no new matchings
found in an iteration: (1) The update part uses inference and
already found matchings to filter the candidate mappings which
are not to be matched. The whole structure and also new
matchings are represented using Horn clauses. To check their
validity, LogMap uses Dowling-Gallier algorithm [17]. (2) The
search for new matchings is done in the same way as in the
previous step.

The last step of LogMap’s ontology matching is the com-
putation of the ontology overlapping score. The user has also
an option to approve or reject specific matchings to form the
final result of the algorithm.
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2) LogMap+ ontology matching: In the previous section
we can notice the following features LogMap tool is lacking:

• using the context of instances based on their classes,

• comparing the contexts of relational data per instance,

• the use of third-party semantic lexicons and

• the use of stemming only.

In this part we present the improved LogMap+ tool. In
Fig. 8 we show the process of the new tool along with the
improved functionalities. The tool includes the incorporation of
third-party semantic sources and context matching of instances
and their relational data.

The Alg. (2) shows all the steps that are needed by the
LogMap tool and the improved parts are written in bold. All
the specific definitions of the functions can be retrieved from
the public source repository [18]. In the indexing of lexical
elements step (line 2) we include also string variants as input.
First we remove stopwords, then we retrieve lemmas and
enrich them with synonyms. We also retrieve their class names
and connect them to the same instances within the index.

Then we perform the intersection of indexes (line 3) and
based on the result, select only the elements for further pro-
cessing (line 4). This enables the scalability of the algorithm
as we work only on the subsets of the input ontologies - O′

1

and O′

2
.

Within the structure indexing step (line 5) we build a class
hierarchy for each subset ontology. The hierarchy is updated
using an additional property “lavbic-owl:relatedTo” (defined
in config file), which represents relationships to the tables

270



Lo
g

M
a

p
+

 -
 i

m
p

ro
v

e
d

 p
ro

ce
ss

 o
f 

o
n

to
lo

g
y 

m
a

tc
h

in
g

O1, O2

Searching for 

initial 

matchings

Matchings 

update
Extension

Matchings 

search

Overlappings 

search

M, M 

WordNet

(synonyms, stopwords,  )

NO

YES

Context-

based 

instance 

matching

Lexical 

elements 

indexing

Structure 

indexing

Lemmagen

Instance indexing gets enriched with 

additional strings from the same 

context. Synonyms, stopwords and 

lemmas are also included.

Also support classes lavbic-

owl:supportClass and path classes 

lavbic-owl:relatedTo are used.

At the instance matching also 

matching of their classes is used 

(context, class, type)

Fig. 8. Process of the LogMap+ tool. The gray parts show the improvements over the existing LogMap tool.

Algorithm 2 LogMap+

Input: O1, O2

Output: M , M ′

1: function LOGMAP+(O1, O2)
2: (LI1, LI2) ⇐ LexicalIndexes(O1, O2)
3: M ′ ⇐ CandidateMappings(LI1, LI2)
4: (O′

1
, O′

2
) ⇐ Module(O1, O2, M ′)

5: (H1, H2) ⇐ StructuralIndex(O′

1
, O′

2
, M )

6: M ⇐ ReliableMappings(M ′, H1, H2)
7: M ′ ⇐ M ′\M
8: (P ′

1
, P ′

2
) ⇐ PropEncoding(H1, H2, M )

9: M ⇐ Diagnosis(P ′

1
, P ′

2
, M )

10: M ′ ⇐ M ′\ Discarded(LI1, LI2, H1, H2, M ′)
11: M ⇐ Diagnosis(P ′

1
, P ′

2
, M ∪MT , M )

12: while MT ⇐ DiscoverMappings(M , H1, H2) do
13: M ⇐ Diagnosis(P ′

1
, P ′

2
, MT , M )

14: end while
15: M ⇐ InstanceContextMatching(O′

1
, O′

2
, M )

16: return M , M ′

17: end function

along the selected mapping path in the SQL database. Neigh-
bouring tables from the SQL database are of type “lavbic-
owl:SupportClass” and are also included into a hierarchy.

The hierarchies and similarity metrics are used to retrieve
initial matchings M (line 6). Then we delete all matchings
from M ′, which are marked as reliable (line 7). Now class
hierarchies along with the matchings from the previous step
are transformed into Horn clauses for detection of incorrect
mappings within M (lines 8,9). Further we check the set M ′

for conflicts in the inverted indexes and class hierarchies. In
this step the matchings are re-checked against the alternative
strings (lines 10, 11). The last step of LogMap matching is
an iterative loop, which is expanding the set of matchings and
ends when no new matchings are found in a new loop (lines
12, 13).

At the current stage we have the matchings only based on
string similarity between classes. Therefore we added a new
step (line 15) in which we use instances and their context to
compare the two ontologies. To perform this step efficiently

we also propose a relational similarity metric (see Sec. III-D).

C. String similarity metric

To measure similarity between strings we use Stoilos’
String Metric for Ontology Alignment (SMOA) [16]. The
metric takes into account differences and commonality features
between the two input strings s1 and s2:

SMOA(s1, s2) = Comm(s1, s2)−Diff(s1, s2)+JW (s1, s2)

Comm(s1, s2) =
2
∑

i length(maxCommonSubStringi)

length(s1) + length(s2)

Diff(s1, s2) =
uLns1 ∗ uLns2

p+ (1− p)(uLns1 + uLns2 − uLns1 ∗ uLns2)

The function of commonality Comm(s1, s2) is defined by
the substring string metric. In the substring metric the biggest
common substring between two strings is computed. This
process is further extended by removing the common substring
and by searching again for the next biggest substring until no
one can be identified. The difference function Diff(s1, s2) is
based on the length of the unmatched strings that have resulted
from the initial matching step. uLen represents the length of
the unmatched string from the initial string. The difference
should play a less important role on the computation of the
overall similarity, so it is calculated as a parametric triangular
norm. Lastly, JaroWinkler (JW ) metric [19] is used as a base
similarity function. Using parameter p we can tune the weight
of string similarity matchings.

The final result of the metric takes values between -1 (non-
match) and 1 (full string match).

271



D. Relational similarity metric

We defined a new relational metric that returns the simi-
larity of an instance matching based also on similarity among
their RDF classes. Thus, if string values of instances are similar
but classes of these instances are not, a matching is marked as
incorrect. The Instance Confidence Factor (ICF) is defined as
follows:

ICF (n,m) = SMOAAnchor(i1, i2)

+

∑
i

n
∑

j
mconfidence(i, j)

sizeof(n) ∗ sizeof(m)
,

where n represents a set of classes of instance i1 and
m a set of classes of instance i2. The result is on a scale
between 0 (instances are completely different) and 2 (complete
match). The first part of the metric uses SMOA metric for the
two instances and the second part calculates the confidence of
matching between the classes of instances:

confidence(i, j) = w ∗ SMOAAnchors(i, j)

+ (1− w) ∗ ScopeAnchors(i, j).

The calculation of confidence factor in the first part checks
the similarities between string values of classes and then in the
second part identifies, whether a pair of classes fall into the
same context. During the evaluation we use default weight w
of 0.5.

IV. RESULTS AND DISCUSSION

We verify our approach using two types of evaluations.
In the first part we start with Sakila model database 4,
transform it to a RDF format and then match it against the
public DBPedia ontology. Then we evaluate only the matching
process explicitly (i.e. LogMap+) against Ontology Alignment
Evaluation Initiative (OAEI) [20].

The web based tool LogMap+ that supports transformation
of an SQL database to an ontology and further the ontology
matching to other linked data sources is available in the public
source repository [18].

A. End-to-end process evaluation

To support an end-to-end process of transforming relational
data into an enriched ontology, we developed a modern web-
based application that consists of a six guided steps to achieve
the goal.

Step 1: A user selects a relational database type and
credentials for the tool to access the database. The database
schema is shown to the user as a dynamic or static image of
entity-relationship diagram.

Step 2: The selected database is represented as a directed
graph (see Sec. III-A) The user selects the tables he would like
to include in an ontology and also the first and the last table.
The tool then calculates and shows all possible paths between

4https://dev.mysql.com/doc/index-other.html

the tables. Now, the user needs to select a path that he would
like to use for the mapping.

Step 3: The user defines a name of a new RDF class along
with the attributes. The attributes can be selected from all the
tables that were found between the first and the last table in
the previous step.

Step 4: The tool prepares a R2RML mapping document,
which can be fine-tuned by the user. The document defines
that database tables to map to RDF classes and database rows
to the ontology instances. The new classes are connected using
“lavbic-owl:relatedTo” relationships. The neighbouring tables
of the first and the last selected table are included into the
mapping to improve the accuracy of the new ontology match-
ing. We name these classes the supporting classes and they are
connected to the other ones by the “lavbic-owl:supportClass”
object property.

Step 5: The user defines the new ontology namespace and
export format along with a location (a file or an ontology
data store). The DB2Triples tool is then used to execute the
transformation from the relational database to the selected
ontology format.

Step 6: The user selects a public linked data source or
an ontology to map the new ontology against. Next, the user
can set the matching parameters: correct matchings as a golden
standard, additional lexicons to use (e.g. synonyms, stopwords,
WordNet), thresholds, constraints (e.g. maximum number of
sysnonyms to take into account), new URIs definition. As a
result, the tool generates matchings in a selected format and
also a list of matchings that were marked as incorrect. After the
user confirms the result of a matching, the new RDF statements
are written into the matched ontology.

To validate the process above, we use the Sakila model
database, from which we selected a path between the tables
“Country” and “Staff” (i.e., country, city, address, store, staff ).
We map the selected path to an ontology and match it with
DBPedia5, which is one of the largest RDF data sources.
To validate the whole process, we use three different system
setups:

• Setup 1: The use of LogMap without our improve-
ments. Therefore no context from support classes is
used and the default UMLS thesaurus is set.

• Setup 2: LogMap with all of the our improvements
without lemmatization (stemming is still used) and
third-party contextual sources (WordNet or UMLS).

• Setup 3: LogMap with all our features and improve-
ments.

During the evaluation we execute each scenario with differ-
ent threshold values that define the validity of the matchings.
The value of a matching between classes is defined by a mea-
sure of confidence and a string similarity metric. On the level
of instances we use a context metric. Prior to the evaluation we
manually defined the correct matchings (i.e., golden standard
matchings) between Sakila database and DBPedia.

In Fig. 9 we show the number of identified matchings
for a specific threshold level. We observe that only Setup

5http://wiki.dbpedia.org/
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3, which includes all our improvements, achieves the same
number of matchings as defined by the golden standard. The
curves of setup 1 and 3 seems similar as they are based on
the same principles, except setup 3 is improved in context
matching also. The constant number of matchings for setup 2
is a result of the context matching step, which excludes the
matchings that do not have the same context values. The setup
therefore returns the same number of matchings regarding of
the threshold level. In comparison the the setups 2 and 3 we
achieve more matchings as the system cannot disambiguate
between the correct and incorrect matchings due to lists of
possible context words. On the other hand, for higher threshold
values they improve the matchings that are lexicographically
different but contextually equivalent (e.g. Staff and Person).
The result of setup 1 clearly shows that it is impossible to
exclude the identified matchings without taking into account
their context as they are lexicographically very similar. Due
to the threshold-based results we further show only the results
achieved at the threshold level 0.95.

Threshold level [%]

N
u

m
b

e
r 

o
f 

m
e

n
ti
o

n
s

50 55 60 65 70 75 80 83 86 89 92 95 98

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0

Setup 1

Setup 2

Setup 3

Golden standard

Fig. 9. Number of matchings based on a matching threshold level for each
of the system setups.

In Table I we show the matching results for all the three
setups at threshold level set to 0.95. We observe that setups 2
and 3 achieve better results than setup 1, which a LogMap tool
without improvements. It is important to notice that having a
precision of 1.0 means that all the predicted matchings are
correct. Further, setup 3 improves the second one by having
also higher recall because in finds correct matching also using
context. For example, to match the following pairs correctly
- “lavbic-owl:Paris” = “dbpedia:Paris Hilton” or “lavbic-
owl:Woodridge” = “dbpedia:Woodridge Western Australia”,
only the context can be of help.

TABLE I. SAKILA DATABASE TRANSFORMATION TO RDF AND

MATCHING TO DBPEDIA RESULTS.

Precision Recall F-score

Setup 1 0.19 0.54 0.28

Setup 2 1.0 0.66 0.80

Setup 3 1.0 1.0 1.0

B. Ontology matching evaluation

Our end-to-end relational database to ontology enrichment
tool features improvements in the LogMap tool. To show the
real contribution, we evaluate the LogMap+ against two stan-
dard tests prepared by OAEI - Large Biomedical Ontologies
FMA-NCI matching problem and Instance Matching problem.

1) Large biomedical ontologies matching problem: focuses
on finding matchings between big ontologies such as Founda-
tional Model of Anatomy (FMA) and Nacional cancer institute
thesaurus (NCI). These ontologies consist of rich semantic
features and contain more ten thousands of instances. The
ontologies FMA and NCI have 78989 and 66724 RDF classes.
The problem is divided into two parts - the small part, which
contains 5% data from FMA and 10% of data from NCI, and
the large part, which includes all the data. We show the results
in Table II and Table III, respectively.

Some of the proposed approaches are also based on the
LogMap tool, while other are specifically build for the chal-
lenge. Other approaches employ also different techniques of
semantic elevation such as information extraction, similarity
detection, rules definition, etc. [21].

TABLE II. LARGE BIOMEDICAL ONTOLOGIES FMA-NCI MATCHING

PROBLEM. RESULTS FOR THE SMALL PROBLEM PART OF 5% FMA (3696
CLASSES) AND 10% NCI (6488 CLASSES) MATCHING.

Tool Time [s] # of matchings Precision Recall F-score

OMReasoner 36369 1403 0.96 0.47 0.63

LogMapLite 44 3467 0.68 0.82 0.74

LogMap-C 289 2124 0.88 0.65 0.75

XMap 144 2571 0.84 0.75 0.79

LogMap-Bio 1226 3412 0.72 0.87 0.79

AML 112 2931 0.83 0.86 0.84

Average 142 749 0.81 0.75 0.76

LogMap 235 3146 0.73 0.76 0.74

LogMap+ 323 2694 0.87 0.77 0.82

The results show that LogMap+ achieves similar results as
the top performing systems in the field. The Agreement Maker
Light (AML) system outperforms our system by a little, but
we must take into account that our system does not use any
specific knowledge about biomedical domain, while all other
systems use specialized techniques or dictionaries. For both
problems we improve the performance of the basic LogMap
tool, especially on the small part, where LogMap achieves a
score below the average.

TABLE III. LARGE BIOMEDICAL ONTOLOGIES FMA-NCI MATCHING

PROBLEM. RESULTS FOR THE LARGE PROBLEM PART OF THE WHOLE FMA
AND WHOLE NCI MATCHING.

Tool Time [s] # of matchings Precision Recall F-score

RSDLWB 2216 728 0.96 0.24 0.38

AOTL 20908 790 0.90 0.24 0.38

OMReasoner 82000 1362 1.0 0.47 0.64

AOT 9341 3696 0.66 0.86 0.75

MaasMatch 1460 2981 0.81 0.84 0.82

LogMap-C 81 2153 0.96 0.72 0.83

XMap 17 2657 0.93 0.85 0.89

LogMapLite 5 2479 0.97 0.82 0.89

LogMap-Bio 975 2892 0.91 0.92 0.92

AML 27 269 0.96 0.90 0.93

Average 101,992 2178 0.91 0.73 0.78

LogMap 37 2816 0.92 0.87 0.89

LogMap+ 46 2716 0.96 0.86 0.91
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2) Instance matching problem: deals with the identifica-
tion of similarities between different RDF or OWL objects.
The OAEI’s instance matching problem defines two sets of
ontology-based instances to match. The first set consists of
1330 instances within four classes, five data properties and one
label property. On the other hand, the second set is constituted
of 2649 instances within four classes, four data properties, one
object property and one label property.

In Table IV we show results of the instance matching
task. LogMap+ achieves poor performance in recall, while
best score in precision. Therefore, we can correctly skip poor
matchings. The recall is poor because the task was multi-
lingual between Italian and English, so our matching technique
could not identify similarities without having a dictionary. Still,
we achieve second result overall.

TABLE IV. INSTANCE MATCHING PROBLEM AGAINST OAEI’S 2014
DATASET.

Tool Precision Recall F-score

InsMT 0.001 0.78 0.002

InsMTL 0.001 0.78 0.002

LogMap-C 0.64 0.04 0.08

RiMOM-IM 0.65 0.49 0.56

LogMap 0.60 0.05 0.10

LogMap+ 0.85 0.06 0.11

V. CONCLUSIONS

In real world scenarios it is hard to improve the quality
or automatically enrich the data in relational databases. It has
already been shown that semantically rich databases such as
ontologies can be used to interconnect schemas. Also, there
exist a lot of general (e.g. DBPedia, FreeBase) or domain
specific (e.g. ChemBl, GeoNames) public semantic sources
within the Linked Open Data cloud that can be of use. As no
end-to-end approach for the transformation of relational data
to an ontology and matching to the existing ontologies exist,
we proposed a new LogMap+ tool.

The LogMap+ is therefore available as a web application
that consists of the two parts. In the first part a user selects a
relational subschema and defines the properties of the new
RDF classes. Then he can set the parameters for further
ontology matching, after which the final result is returned as a
new enriched semantic source. We used some existing tools to
automate the process and proposed an improved approach for
a general ontology mapping task. These include lexical data
indexing, use of an arbitrary general thesaurus, data cleaning
and multi-lingual lemmatization.

A user needs to select relational database entities to map to
an ontology and after that, the process can be automated. Still,
a user has possibilities to set up the system with additional
corpora and guide the system with accepting or rejecting some
of the initial matchings.

We evaluated our end-to-end tool against an example
Sakila relational database and DBPedia ontology. Further,
we separately evaluated the improved LogMap tool against
the official Ontology Alignment Evaluation Initiative 2014
challenge datasets. They are based on biomedical domain but
our general tool achieves the second score without employing
domain specific thesaurus, such as UMLS. As LogMap+ also

relies on a context, it achieves far better results when enriching
semantically rich ontologies with many supporting classes.
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