University of Ljubljana Faculty of Computer and Information Science



# What Language Do Stocks Speak?

Marko Poženel and Dejan Lavbič

Baltic DB&IS 2018 13<sup>th</sup> International Baltic Conference on Databases and Information Systems





- Motivation for our work,
- Proposed Forecasting Model,
  - Input OHLC Data, OHLC Data Normalization,
  - Japanese Candlestick Pattern Identification,
  - Sentence Construction,
  - Learning Context with Word2Vec,
  - Prediction,
- Evaluation,
  - Russell Top 50 Index,
  - Buy & Hold, Moving Average, MACD,
- Conclusion and Future Work.



#### Motivation (1)

- Many approaches to forecasting future stock values:
  - technical analysis (historical price changes),
    - Japanese Candlestick Trading Strategy from 18<sup>th</sup> century used for trading rice,







#### Motivation (2)

- Many approaches to forecasting future stock values:
  - fundamental analysis (company's business, news etc.),
    - some approaches are based on NLP algorithms,
      - Word2Vec is a group of models (e.g. CBOW, skipgram) that is a 2-layer neural network used to extract linguistic contexts of words,



- combine Japanese Candlestick Trading Strategy and Word2Vec approach:
  - create a simplified OHLC language, used for input to Word2Vec,
  - learn rules and patterns with Word2Vec and use this knowledge to predict future trends in stock value.

University of Ljubljana Faculty of Computer and Information Science

## Proposed Forecasting Model (2)



Baltic DB&IS 2018, 2<sup>nd</sup> July 2018

6



 we observe input data on a trading day basis for n<sub>d</sub> trading days and Japanese Candlesticks are represented as OHLC tuples,

$$\begin{bmatrix} d_{(1 \times n_d)} X_{(4 \times n_d)} \end{bmatrix} = \begin{bmatrix} d_1 & O_1 & H_1 & L_1 & C_1 \\ d_2 & O_2 & H_2 & L_2 & C_2 \\ \dots & \dots & \dots & \dots \\ d_{n_d} & O_{n_d} & H_{n_d} & L_{n_d} & C_{n_d} \end{bmatrix}$$



 we're interested in the shape of Candlestick and not the absolute value, so we normalize with Open (O) value

$$norm \big( \langle O, H, L, C \rangle \big) = \langle 1, \frac{H}{O}, \frac{L}{O}, \frac{C}{O} \rangle : X \to \overline{X}$$

• which results in  $\overline{X}_{(4 \times n_d)} = \begin{bmatrix} 1 & \frac{H_1}{O_1} & \frac{L_1}{O_1} & \frac{C_1}{O_1} \\ 1 & \frac{H_2}{O_2} & \frac{L_2}{O_2} & \frac{C_2}{O_2} \\ \dots & \dots & \dots \\ 1 & \frac{H_{n_d}}{O_{n_d}} & \frac{L_{n_d}}{O_{n_d}} & \frac{C_{n_d}}{O_{n_d}} \end{bmatrix}$ 



 we're interested in the shape of Candlestick and not the absolute value, so we normalize with Open (O) value





- automatically detect candlestick clusters by employing KMeans,
- limit the *number of* possible *words* of stocks' language n<sub>w</sub> (OHLC shapes),

 $KMeans(n_w): \overline{X} \to w \qquad \qquad w_{(1 \times n_d)} = \begin{bmatrix} w_1 \ w_2 \ \dots \ w_{n_d} \end{bmatrix}^T$ 

- the value of  $n_w$  is based on the Silhouette measure,
- word is an individual trading day and is a representation of a specific Japanese candlestick



• example of  $n_w = 20$  identified words for **Coca Cola (KO) stock**,





- we specify a sentence length I<sub>s</sub> that defines a number of consecutive words (i.e. trading days) grouped into sentences,
- the *number of sentences*  $n_s$  is therefore  $n_s = n_d (l_s 1)$





## Learning with Wor2Vec (5<sup>th</sup> step) (1)

- Word2Vec acquires vectors for words (i.e. trading days) that explicitly contain various rules and patterns,
- we define the *number of days for merging context n<sub>ww</sub>* and the *number of neurons n<sub>v</sub>* in hidden layer weight matrix,
- Word2Vec algorithm **performs** the following **transformation**  $W2V(S, n_{ww}, n_v) : S \to WM$





• the result of Word2Vec learning phase is a *Weight Matrix WM* with n<sub>v</sub> columns (number of vectors) and n<sub>w</sub> rows (number of words in stocks' language) and is defined as follows  $\begin{bmatrix} v_{1,1} & v_{1,2} & \cdots & v_{1,n_v} \\ v_{2,1} & v_{2,2} & \cdots & v_{2,n_v} \end{bmatrix}$ 







- our aim is that the predictive model would, based on input OHLC sequence, trigger one of the following actions: **BUY**, **SELL**, **HOLD (do nothing)**,
- we label trading days from matrix *X* in training set with **trading actions**  $y_{(1 \times n_d)} = [A_1 A_2 \dots A_{n_d}]^T$



take into account number of look ahead days  $n_{la}$ , trading fee  $v_{fee}$ , initial equity e, maximum number of stocks to trade  $n_{max}$  and stock's close price C.

 $y_{i} = \begin{cases} 0: \text{BUY} & n_{max} \cdot C_{j} > n_{max} \cdot C_{i} + 2 \cdot v_{fee}, \ j \in [i, i + n_{la}] \\ 1: \text{SELL} & n_{max} \cdot C_{j} < n_{max} \cdot C_{i} - 2 \cdot v_{fee}, \ j \in [i, i + n_{la}] \\ 2: \text{HOLD} & \text{otherwise} \end{cases}$ 



- Basic prediction
  - normalized OHLC data and vector of trading actions from "Future Teller" classification, where SoftMax classifier defines the following transformation

$$\begin{bmatrix} \overline{X}_{(3 \times \overline{n_d})} \ y_{(1 \times \overline{n_d})} \end{bmatrix} = \begin{bmatrix} \frac{H_1}{O_1} & \frac{L_1}{O_1} & \frac{C_1}{O_1} \\ \frac{H_2}{O_2} & \frac{L_2}{O_2} & \frac{C_2}{O_2} \\ \dots & \dots & \dots \\ \frac{H_{\overline{n_d}}}{O_{\overline{n_d}}} & \frac{L_{\overline{n_d}}}{O_{\overline{n_d}}} & \frac{C_{\overline{n_d}}}{O_{\overline{n_d}}} \end{bmatrix} \rightarrow y = f\left(\frac{H}{O}, \frac{L}{O}, \frac{C}{O}\right)$$

 does not perform well as it does not include the context in which OHLC candlesticks appear and influence price





#### Prediction with summarized Word2Vec vectors

Prediction (7th step) (2)

- from vector of words and vector of trading actions
- we replace words with a Word2Vec features  $\left[X'_{(n_v \times \overline{n_d})} y_{(1 \times \overline{n_d})}\right] =$ vector (hyper parameter) from Weight Matrix



$$\begin{bmatrix} w_{(1 \times \overline{n_d})} \ y_{(1 \times \overline{n_d})} \end{bmatrix} = \begin{bmatrix} w_1 & A_1 \\ w_2 & A_2 \\ \dots & \dots \\ w_{\overline{n_d}} & A_{\overline{n_d}} \end{bmatrix}$$

$$\begin{bmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n_v} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n_v} \\ \dots & \dots & \dots & \dots \\ v_{w_{\overline{n_d}},1} & v_{w_{\overline{n_d}},2} & \dots & v_{w_{\overline{n_d}},n_v} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_{\overline{n_d}} \end{bmatrix}$$

- Prediction with summarized Word2Vec vectors
  - we add context by adding previous n<sub>m</sub> trading days to the current trading day,
  - the result is contextualized matrix with context vectors for given word (i.e. trading day) that is a sum of previous trading days,

$$\begin{bmatrix} X_{(n_v \times \overline{n_d}')}^{\prime\prime} y_{(1 \times \overline{n_d}')} \end{bmatrix} = \begin{bmatrix} cv_{1,1} & cv_{1,2} & \dots & cv_{1,n_v} \\ cv_{2,1} & cv_{2,2} & \dots & cv_{2,n_v} \\ \dots & \dots & \dots & \dots \\ cv_{w_{\overline{n_d}}',1} & cv_{w_{\overline{n_d}}',2} & \dots & cv_{w_{\overline{n_d}}',n_v} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_{\overline{n_d}'} \end{bmatrix}$$





## **Evaluation** (1)

- considered various performance metrics (e.g. total hit ratio, MSE, classification accuracy, AUC, logarithmic loss etc.),
- decided to evaluate using a trading strategy with initial equity (\$10.000,00) and selected prediction model, including trading fees (\$15) that penalize numerous trading actions which decrease the profitability of prediction model utilization.



## Evaluation (2)

 historical data included 4.000 OHLC trading days, starting from 1. 5. 2000.





## **Evaluation** (3)

- the initial proposed model was evaluated on shares of Apple (AAPL), Microsoft (MSFT) and Coca-Cola (KO),
- the final evaluation was performed on Russell Top 50
  Index (50 stocks of the largest companies in the U.S. stock market),
  - the model was trained for each individual stock,
- the results compared with existing trading strategies Buy & Hold, Moving Average (MA) and MACD.



#### • average yield with initial equity of \$10.000,00

|                  | Buy & Hold  | MA(50,100) | MACD      | W2V         |
|------------------|-------------|------------|-----------|-------------|
| Test phase       | \$2,818.98  | \$1,073.06 | -\$482.04 | \$11,725.25 |
| Validation phase | \$16,590.83 | \$6,238.43 | \$395,10  | \$10,324.24 |

#### • Wilcoxon Signed Rank Test for forecast models

|                  | Buy & Hold |         | MA(50,100) |         | MACD |         |
|------------------|------------|---------|------------|---------|------|---------|
|                  | W          | p-value | W          | p-value | W    | p-value |
| Test phase       | 2          | < .0001 | 1          | < .0001 | 1    | < .0001 |
| Validation phase | -          | -       | 427        | < .0210 | 155  | < .0001 |

 with the correct selection of parameters our model achieves statistically significantly better yields than the reference popular methods.



#### Conclusion

- proposed model has a great **potential for practical use**,
- it is too early to conclude that the proposed model provides a financial gain,
  - selected model parameters are not equally appropriate for different time periods in terms of yield,
- the forecast model is strongly influenced by the training data set,
- if training with data that contains bear trend, the model might be very cautious despite the general growth trend,
  - the problem is due to **overfitting**, so training with **more** data would help.



#### **Future Work**

- incorporate the stop loss function and already known and proven technical indicators,
- the use of **OHLC data of other stocks** in the training phase as we acquire more diverse patterns that helps algorithms to detect the underlying pattern better,
- to improve classification accuracy and logarithmic loss, the SoftMax algorithm could also be replaced with advanced machine learning classification algorithms,
- alternative method of forecasting as a simple linear operation of aggregating vector representations of the last n Japanese candlesticks,
  - we could obtain a daily, weekly or monthly trend forecast.



#### Marko Poženel and Dejan Lavbič

# What Language Do Stocks Speak?



Dejan.Lavbic@fri.uni-lj.si

in https://www.linkedin.com/in/dejan/



http://www.lavbic.net



