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Abstract

IoT environments are becoming increasingly heterogeneous in terms of their distributions and included
entities by collaboratively involving not only data centers known from Cloud computing but also the
different types of third-party entities that can provide computing resources. To transparently provide
such resources and facilitate trust between the involved entities, it is necessary to develop and implement
smart contracts. However, when developing smart contracts, developers face many challenges and
concerns, such as security, contracts’ correctness, a lack of documentation and/or design patterns, and
others. To address this problem, we propose a new recommender system to facilitate the development
and implementation of low-cost EVM-enabled smart contracts. The recommender system’s algorithm
provides the smart contract developer with smart contract templates that match their requirements
and that are relevant to the typology of the fog architecture. It mainly relies on OpenZeppelin, a
modular, reusable, and secure smart contract library that we use when classifying the smart contracts.
The evaluation results indicate that by using our solution, the smart contracts’ development times are
overall reduced. Moreover, such smart contracts are sustainable for fog-computing IoT environments and
applications in low-cost EVM-based ledgers. The recommender system has been successfully implemented
in the ONTOCHAIN ecosystem, thus presenting its applicability.
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1 Introduction

The Internet of Things (IoT) is a modern technology that allows various devices to exchange information
over the Internet. These devices aid their users in facilitating their everyday routines and automate them
via digitalization. Typical IoT environments comprise many components, such as sensors, gateways,
computing, and storage nodes in the Edge-to-Cloud continuum. Despite the enormous benefits the IoT
has introduced to domains, such as smart and safe construction, Industry 4.0, smart cities, and IoT
solutions are generally based on centralized architectures. Essentially, a single point of failure in such
scenarios, where the server goes down, can significantly reduce the Quality of Service (QoS) and the
Quality of Experience (QoE), decrease trust in the system, and place its IoT data in danger. However,
these problems in IoT can be overcome by implementing blockchain and its core technologies (i.e.,
immutable ledgers, smart contracts, and smart oracles) (Atlam et al. 2020). Thus, the usage of smart
contracts in IoT environments not only benefits from the implicit blockchain benefits but enables the
implementation of comprehensive functionalities that may significantly increase the distribution and
overall trust of the IoT environment.

A smart contract is a digital variation of a traditional contract stored as programs on a blockchain that
is ordinary used to automate the execution of an agreement without any intermediary’s involvement.
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The base purpose of each smart contract is to automate workflows by triggering specific actions when
conditions are met. Our work relies on the first publicly released smart contract, enabling ledger
Ethereum with built-in fully fledged Turing-complete programming language Solidity. Nevertheless,
the operational cost and speed limitations in block generation times using native Ethereum ledgers
cannot always satisfy the requirements of many use case domains, including IoT. For this reason, new
solutions using the Ethereum ledger core computational engine called the Ethereum Virtual Machine
(EVM) launched their own ledger. The primary purpose of these ledgers is to increase sustainability and
overall performances. Since general blockchain reseach studies strive to improve general requirements
such as the optimization of query processing (Wang et al. 2022; Wu et al. 2022) and many others,
the smart contract is more likely to investigate how to cover new use cases from the cloud to the edge
using the development of more performant blockchain ledgers~[?]. Moreover, on-chain operations started
interacting with off-chain data within the Smart Oracle mechanism available in smart contracts.

The development process of smart contracts in Solidity language is a very challenging task. For example,
the documentation is limited, the community of developers is limited, and the language does not follow
standardized design patterns, etc. Since the principles of smart contracts do not allow updating or
deleting a smart contract once deployed, the functionalities have to be extremely well written and tested
to ensure security, as outlined by Zou et al. (2021).

The high-level goal of our work is to decentralize fog-based IoT architectures with the integration of
smart contracts on the fog layer using low-cost EVM-enabling ledgers. To reach the goal, we propose a
recommender system that provides the developer with robust, reusable smart contract templates based on
the fog architecture characteristics and requirements. Our approach can be summarized as follows. First,
we obtain production-ready and secure smart contract templates (e.g., OpenZeppelin1 and ChainLink2)
and classify them according to the interactions that occur among them and the actual purpose of the
contracts. Afterward, we define our fog architecture in a standardized TOSCA format (Brogi, Soldani,
and Wang 2014). Then, we use our TOSCA-defined fog architecture and requirements as the input data
of our recommender system. As a result, we obtained a list of the relevant smart contract templates that
can be used in our system directly or in an extended manner to fulfill all use-case-specific requirements
and workflow. By providing such templates, we implicitly promote secure smart contracts by design and
strive to follow good practices provided as ready-to-use functions or interface function standards. Hence,
the development time of the developers is reduced. By upgrading fog architecture with smart contracts,
it is possible, for example, to provide a pricing policy among end users that want to provide the hardware
and/or software resources within the fog environment using cryptocurrencies or tokens. A main benefit
for the system is either a reduction in the operational cost and/or the increase in the system’s revenue.
To summarize, we provide the following contributions in the paper:

• We propose a classification of smart contracts built upon the characteristics of the contracts and
the inheritance relationship among them.

• We develop a recommender system algorithm for smart contract template selection in fog
architectures.

• We introduce a novel architecture for recommender system that proposes robust smart contract
templates based on the fog architecture and system requirements input data.

The remainder of the paper is split into seven sections. Section 2 places our work within the context of
other related works. Section 3 describes the baseline scenario. Section 4 analyzes reusable smart contract
templates by using classification and clustering methods to propose fog-oriented classification. Section 5
proposes the recommender system of the classified smart contract templates for fog architectures. Section
6 presents an experimental evaluation of the proposed recommender system, and Section 7 draws the
conclusion.

2 Related Works

Smart contracts were first publicly available in 2015 with the release of the Ethereum decentralized
ledger3. The novel concept enabled application scripts in terms of their deployment and execution in

1https://www.openzeppelin.com/
2https://chain.link/
3https://ethereum.org/
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a safe environment named the Ethereum Virtual Machine (EVM) on distributed nodes in the form of
decentralized applications (DApps). In the Cloud domain, smart contracts became extremely popular
as a tool to improve existing environments (Kumar et al. 2022; Ahmadjee et al. 2022; Guo et al.
2022) and even addressed different requirements such as privacy-preserving data sharing~[?]. With the
introduction of dedicated optimized variations of Ethereum (e.g., BNB chain4, Polygon5, Optimism6, and
many others) using the same EVM core engine, the sustainability of the smart contract use case increased.
Even IoT-dedicated ledgers such as IOTA7 started with the integration of EVM, enabling ledgers with
limited compatibility and thus allowing the integration of smart contract into more complex IoT scenarios
(J. Li, Peng, and Xiao 2016). Lakhan et al. (2021) proposed an Ethereum smart-contract-based
client-fog-cloud healthcare system by integrating sustainable smart contracts for dedicated operations
focused on scheduling.

The development of smart contracts enabling Cloud-to-Edge architectures is a complex task that requires
experienced developers in combination with the usage of analysis tools (Kushwaha et al. 2022a) to avoid
or minimize the known vulnerabilities in the design process of smart contracts. To better understand
the design of smart contracts in the Ethereum ledger, Di Angelo and Salzer (2020) performed a study
of the smart contracts’ similarities by analyzing the design of their interfaces and grouping them into a
small set of clusters. The relevance of code reutilization was further studied by Chen et al. (2021), and
the authors found that 26% of the contract code blocks were reused until early 2021. In collaboration
with the EVM-based ledger solutions, individual researchers and companies, such as OpenZeppelin,
actively started to promote the usage of production-ready smart contract templates in the development
process. Moreover, a particular focus on understanding tokenomics was proposed as a design-oriented
morphological framework by Freni, Ferro, and Moncada (2022).

A recommender system is a subclass of information systems. In general, the workflow of recommender
systems can be described with three steps:

(i) information collection phase,
(ii) learning (algorithmic) phase, and
(iii) recommendation phase (Isinkaye, Folajimi, and Ojokoh 2015).

In the context of the blockchain domain, there were many variations in the implementation of
recommender systems in a distributed manner (Himeur et al. 2022). Zhang et al. (2012) developed a
recommender system tool CloudRecommender by proposing a declarative solution for recommending
Cloud infrastructure services in contrast to our approach of recommending smart contract templates.
A context-free recommender system approach was proposed by Lisi et al. (2019), and the authors
offloaded most of the system’s logic into smart contracts, thus making it mainly decentralized. On the
other hand the scope of our recommender system is domain-specific, and smart contracts have play the
role of recommender output results in order to improve IoT fog architectures with blockchain-implicit
properties and/or dedicated functionalities.

All code-based analysis studies and available smart contract templates (e.g., OpenZeppelin and our past
work) comprised the foundations of the further classification of the smart contract templates proposed
in our work. To our knowledge, no studies on recommender systems for robust smart contract templates
in the context of fog computing and the Internet of Things (IoT) have been proposed.

3 Baseline scenario

Typical IoT applications are composed of many different components such as sensors, gateways,
computing, and storage nodes that are often not owned by the application developer but implemented
as pay-per-use services by third-party resource providers. Due to the immense diversity of IoT
environments, they often differ because of their specific requirements. Moreover, applying blockchain
as a technology in such complex environments can cause lengthy development, reduce scalability, and
increase complexity due to incompatible standards.

4https://www.bnbchain.org/
5https://polygon.technology/
6https://www.optimism.io/
7https://www.iota.org/
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The baseline scenario (see Figure 1) of our solution is motivated by the above-elaborated problems and
envisions the implementation and utilization of a novel blockchain recommender system that will perform
the following:

(1) compose smart contract templates that are based on the application’s specification, following good
practices and design patterns;

(2) facilitate the blockchain implementation by providing the IoT developers with reliable, standardized
smart contracts for their use cases;

(3) accelerate the overall development and implementation of smart contracts in IoT environments.

Figure 1: Outline of the baseline scenario.

Moreover, it will enable peer-to-peer (P2P) transactions between the application’s developers and the
resource providers. In other words, the scenario currently targets two essential groups of potential users:
the IoT application developers and the resource providers. The complete workflow is composed of five
consecutive steps:

1. The application developer defines IoT’s available application quality requirements (e.g., data access,
accesibility, scalability, etc.) and baseline cloud–fog specifications for application deployment using
a TOSCA standard.

2. The Recommender System receives the requirements and specifications as input and assembles a
set of smart contract templates, which will be further selected by the application developer and
further implemented in a comprehensive fully functional dedicated smart contracts.

3. The Application Developer is offered the opportunity to approve or modify the smart contracts.
Once the smart contracts are approved, they are deployed on the blockchain.

4. When the smart contracts are deployed on the blockchain, different entities in the system (e.g.,
resource providers) can interact with them according to the democratic voting that takes places
amoung the system’s stakeholders and resource providers. For instance, by interacting with the
smart contract, the resource providers enable access to their resources (i.e., computing, storage
resources, and IoT data) for third parties and obtain direct incentives from that interaction.

5. When the interaction with the smart contracts results in new records on the blockchain, the
application’s developer (i.e., the IoT application) is allowed to interact with the providers’ resources
based on the policy agreed in the previous step.

4 High-level classification of reusable smart contracts

This section presents a classification of reusable smart contracts based on hierarchical analysis. First,
we offer the main domains in the ONTOCHAIN environment. Then, we select the most currently
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advanced library for reusable smart contracts and describe them by their base properties and predefined
modules. By the topology of smart contracts and inheritance among the smart contracts and in contrast
to ONTOCHAIN domains, we propose a classification of smart contracts. Since tokenomics represents
one of the most important categories, we present the token standards and summarize the fundamental
properties.

4.1 Pillar domains in the ONTOCHAIN ecosystem

The next-generation ONTOCHAIN framework is a modular blockchain framework that leads to a more
human-centric Internet that supports the values of openness, decentralisation, inclusiveness, and the
protection of privacy (Papaioannou et al. 2021). It delivers various real-world solutions, such as
trustworthy web and social media, trustworthy crowdsensing and reputation management, distribution
logistics, data management, and similar solutions via the use of multiple ledger and semantic technologies.
Its main goal is to further expand as an ecosystem that will address and complement different use cases
using the ONTOCHAIN protocols and its different blockchain and semantic components.

Figure 2 depicts the high-level multi-layer architecture of the ONTOCHAIN framework. The blockchain
layer provides a distributed execution environment that enables access to multiple distributed ledger
networks that the ecosystem stakeholders can utilise. The ontologies layer comprises novel ontologies
that can be managed in a trusted and secure manner. The application and core protocols and services
enable seamless interaction between the framework’s layers. Namely, these interoperability protocols
offer identity management, reputation management, data provenance, market mechanisms, and other
functionalities that the applications of the ecosystem can exploit.

Figure 2: ONTOCHAIN high-level architecture.

Based on meticulous state-of-the-art analyses (Casino, Dasaklis, and Patsakis 2019; CBInsight. 2021),
the ONTOCHAIN framework identified 15 domains that can deliver a plethora of core use-case
applications that can complement the ecosystem and exploit the framework’s functionalities. Namely,
the following application domains were identified: agrifood, art, construction industry, education and
science, energy management, fashion and luxury, financing, healthcare, Industry 4.0, information
fact-checking, insurance, logistics mobility, public administration, and tourism. Given the uniqueness
and variety of different types of possible applications, their decentralisation and development of smart
contracts can be complex and lengthy. Motivated by this, the following sections will introduce a
categorization of smart contracts and a recommender system for smart contracts that aims to facilitate
smart contract development and application decentralization.
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4.2 Base categorization of smart contracts

Initially, smart contracts were represented in a low-level, assembly-like sequence of operands that
demanded proper low-level programming knowledge and experience from developers. In March of
2018, the first version of Solidity-based, JavaScript-like programming language, smart contracts, was
released and thus encouraged a more comprehensive range of developers to contribute to the Ethereum
ecosystem. The development methodology did not fully follow standard processes due to the specifics
in the life-cycle of Ethereum smart contracts (Sillaber and Waltl 2017). For example, it is impossible
to update an instance of a smart contract by only redeploying it due to the tamper-proof implicit
properties of the Ethereum ledger. Therefore, coding anomalies in the smart contracts, such as bugs,
lack of validation, incompatible command sequence, and other issues, led to security vulnerabilities with
usually severe consequences in communities using vulnerable smart contracts (Kushwaha et al. 2022b).
This iterative learning process delivered coding guidance provided by various analysis tools (Kushwaha
et al. 2022a) and design patterns in the form of smart contract templates. The latter covers different
functionalities, standards (e.g., tokens), and good practices that may facilitate the development process
of solidity-based smart contracts. Most companies providing production-ready smart contracts rely on
security-audited smart contract templates by OpenZeppelin.

The library of modular, reusable, and secure smart contracts for Ethereum and other EVM-enabling
ledgers consists, in the time of writing (library version 4.8.0), of 174 smart contracts. The actual number
of operational ones is 155, defined by the base smart contract document definitions such as contract,
abstract contract, interface, or library. By default, the smart contracts are organized into 11 main
modules that may be summarized as follows:

• The Access module supports basic, role-based, cross-chain, and other access control mechanism or
policies: Ordinary, these policies are applied in the smart contract’s individual functions.

• The Cross Chain module provides a component to improve cross-chain awareness of smart contracts
via the Arbitrary Message Bridge (AMB) mechanism.

• The Finance module roughly includes functionalities for financial systems on both types of assets,
ETH or other EVM coins and tokens. The main two contracts provide splitting payments among
multiple entities and the vesting of assets for a given beneficiary.

• The Governance module consists of comprehensive on-chain governance smart contracts for use
cases such as voting, governance control, and other time-lock-related functionalities.

• The Interfaces module summarized the interfaces that may be implemented in smart contracts and
thus provided dedicated functionality workflows.

• The Meta-transactions module includes minimal extended ERC-2771 contract instance and a
context variant with the ERC-2771 support to support gasless transactions.

• The Proxy module defining a low-level set of contracts defining different proxy patterns: (i) not
able to upgrade, immutable by default, and (ii) scalable using an upgradable proxy pattern.

• The Security module aims to cover the security domain—more concretely, the good practices
enhancing security.

• The Tokens module includes the definition of fundamental ERC-based token standards that are
presented and compared among them in the following subsection.

• The Utilities module consists of miscellaneous contracts and libraries containing utility functions
that facilitate the data management of new data types, security, and the safe use of low-level
primitives.

• The Vendor module includes smart contracts that enable work with the most common
EVM-compliant chains (e.g., Arbitrum, Polygon, Optimism, etc.).

The main categorization based on the described modules above consists of smart contracts proposed
by the library authors consisting of different types of smart contracts and smart contract quantitative
coverage, as depicted in Figure 3. Our classification is derived from the main categories relying on
inheritance levels and interconnections from the perspective of available functionalities, as presented in
the following subsections.
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Figure 3: OpenZeppelin main smart contract modules in relation to the contract types.

4.3 Tokenomics

Tokenomics play a crucial part in the design of smart contract functionalities due to the possibility of
providing advanced functionalities enabled by the token exchange and/or interaction throughout smart
contracts. EVM-enabling ledger tokens, by design, run on a Layer-2 protocol that relies on Layer-1 for
security and consensus. For example, all operations performed with tokens are fueled in the transactions
by native cryptocurrencies, such as ETH in the Ethereum ledger. In the smart contract implementation
of token functionalities, it is vital to understand the token standards, their methodology, capabilities,
and limitations. Currently, there are five token standards officially approved by the Ethereum developer
community in addition to the attempts that were not approved or finalized, such as ERC-223 and
ERC-1337. The main comparison of the official ERC standards is summarized in Table 1.

Table 1: Comparison among the available EVM-compliant token
standards.

Token
Standard

Fungible
Token

Non-
fungible
Token

Token
Compatibility

Release
Year

Advanced Features

ERC-20 Yes No / 2015 Reduces the complexity
of token interactions.

ERC-721 Yes Yes / 2018 Enables a certificate of
ownership for a virtual

item.

ERC-777 No No extends ERC-20 2017 Allows backwards
compatibility.

ERC-1155 Yes Yes functionalities
from ERC-20,
ERC-721 and

ERC-777

2019 Allows batched
operations for increased

gas efficiency.

ERC-4626 Yes No extends ERC-20 2022 Standardizes tokenized
vaults.

The standards are mainly divided by fungible properties along with other specific properties. In our
work, we will consider token standards that contrast with common use cases that may be applied to fog
architectures.
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4.4 Hierarchical analysis of smart contracts

The design of smart contracts follows standard object-oriented programming features, such as an
extension of the functionalities of a program to encourage the development of individual ready-to-use
modules in a comprehensive smart contract. For example, developers strive to more systematically
separate codes, reduce the dependencies, import directives, increase the re-usability of existing
programming code, and even enforce the proposed workflow (e.g., voting smart contract). In the
initial OpenZeppelin analysis, 65 individual smart contracts and 90 smart contracts were involved in
the inheritance. The inheritance is represented either as extended in a smart contract or defines the
module’s fundamental behaviour, functions, or primitives, identifying four main clusters sorted by the
ascending number of contracts in the interaction:

1. The first cluster consists of two smart contracts designed for EVM-based dedicated chain Arbitrum.
The hierarchy dictates interface contract (IInbox) extending standard Arbitrum events through the
base interface (IDelayedMessageProvider) as shown in Figure 4 in the bottom left.

2. The second cluster organizes the ERC-1820 standard defined in the contract ERC1820Implementer,
extending the interface IERC1820Implementer and roughly defining a universal registry smart
contract where the address policy is defined (e.g., an address can register which interface it supports
and which smart contract is responsible for its implementation), as depicted in Figure 4 in the
bottom upper left.

3. The third cluster of seven contracts describes the proxy policy for different purposes (see Figure 4:
bottom right).

4. The fourth biggest cluster of ninety-nine contracts involves ERC token standards in conjunction
with the modules such as governance, access, and others, as shown in Figure 4. The most dominant
module in inheritance is token, followed by governance and utils (utilities). Deployable contracts
are realized by inherited abstract contracts containing minimal business logic and interfaces that
enforce function definitions, including global variables and events.

We classified the most relevant smart contract functionalities from the base OpenZeppelin categorization
and clustering derived from the inheritance among smart contracts. In addition, the ONTOCHAIN
environment was considered in order to converge the categories into requirement-like descriptions on two
levels (see Figure 5: (i) the base classifier and (ii) the detailed classifiers suitable in the process of the
recommender system where the system requirements are more concrete.

5 Recommender system of reusable smart contracts for Fog
architectures

In this section, we describe the recommender system’s methodology. First, we consider the fog
environment’s data representation to represent the architecture’s base properties, such as components,
end users, and relationships among them. Then, we propose a taxonomy of the input data described as
fog architectures and related requirements defined by the stakeholders of the environment. At the end
of the section, we propose the architecture of our recommender system.

5.1 Data descriptors

Fog architectures consist of many types of components that are represented in different formats and
even different notations. In the cloud computing domain, this problem was addressed in 2014 with
the establishment of a standard proposed by a nonprofit consortium OASIS8 named Topology and
Orchestration Specification for Cloud Applications (TOSCA). The standard specifications defined the
cloud architectures with components in YAML format. Furthermore, the research community also
addressed other emerging domains, such as fog and edge, where Tsagkaropoulos et al. (2021) proposed
extensions to the existing standard. In our work, the fog architectures are packed in TOSCA format to
describe the interactions among the components and the involved entities (e.g., properties, capabilities,
and relationship), as shown in Listing 1.

8https://www.oasis-open.org/
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Figure 4: Inheritance of OpenZeppelin components containing contract types: (i) contracts, (ii)
interfaces, and (iii) abstract contracts. Libraries have not been visualized. The most dominant classifiers
are tokens, governance, and utilities.
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Figure 5: Identified classifiers represented into two levels: (i) main and (ii) detailed classifiers.
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5.2 Architecture of the recommender system

Fog architecture is becoming popular due to its possibility for offloading computational tasks and thus
the components on the fog nodes that can be a part of cloud-dedicated data centres and infrastructure,
provided by the end users (Mann 2021). The process of offloading includes end user provisioning services
or resources in the fog environment and ordinarily demanded manual operations (e.g., agreement about
the price and policy, registering a new provisioning component, etc.) that are often performed via
centralized components. These manual operations can be defined in a dedicated smart contract following
the requirements of the system and stakeholders. Developing such complex smart contracts is very
difficult and requires an experienced smart contract developer. Therefore, the development can be
facilitated since the recommender system provides, as a result, smart contract templates that are intended
to be extended to follow the use case of the system jointly with smart contracts.

The architectural design of the recommender system, depicted in Figure 6, relies on two main inputs:

(i) fog architecture represented in standardized format TOSCA v. 2.0 and
(ii) requirements provided as system requirements by the fog architect.

Figure 6: High-level architecture representing the pillar recommender system components with the main
workflow.

The recommender system engine analyzes the input data using the three following main steps:

• The architecture reasoning step analyzes the topology of the fog architecture among the individual
sets of components by focusing on the capability attribute, which defines the characteristics of the
specific component, and the relationship that provides the type of the connection (e.g., protocol,
allowance such as command-line interface (CLI), etc.). Additional features are extracted from the
fog environment’s high-level properties, such as the types and number of components where the
component’s representation and the algorithm’s details are presented in the following section.

• The requirement analysis step focuses on system requirements that can be either general or
detailed. General requirements such as token support provide a wider range of smart contract
template candidates, which include all types of tokens (fungible and non-fungible). The detailed
requirements, on the other side, significantly narrow the smart contract template candidates.

• The comprehensive check step unifies the results from the first two steps, particularly the cases of
conflicting smart contract templates (e.g., ER-C20 and ERC-721) that cannot be defined in the
same smart contract together. Therefore, the first and second steps are repeated, including scoring
on each smart contract template candidate, where the one with a higher score is included in the
component’s result list.

The algorithm of the recommender system engine is presented in the following section. Finally, the
developer obtains a list of smart contract templates by matching the fog architecture’s typology and
system requirements. The developer obtains ready-to-use smart contracts, abstract smart contracts that
need to be extended, interfaces, and libraries implicitly via other contracts.
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6 Experimental evaluation

6.1 Cost estimation of smart contracts

The long-term sustainability of smart contracts integrated with the fog environments is a significant
property in developing dedicated smart contracts based on robust templates. The aim of this
experimental study is cost estimation expressed with Ethereum network fees Gas by definition, which
measure the amount of computational effort required to perform specific operations on Ethereum or
other EVM-compliant ledgers. In our work, we will use Ethereum’s Gas represented with the unit Gwei
or in nanoeth, which is represented as 1 ETH = 109 Gwei.

Figure 7: Cost estimation of the deployment process and available functions in deployable smart
contracts.

Our cost estimation methodology follows the following steps:

(i) deployment of smart contract in a local testnet environment,
(ii) the execution of all available smart contract functions with dedicated gas estimation function or

empirically execute complex functions (C. Li et al. 2020), and a
(iii) summary of the operational cost obtained in the first and second steps.

We will use default the Gas parameters and TruffleSuite9 framework to simulate the EVM environment.
The experiments were performed on deployable smart contracts of type contract where the simulation’s
results are shown in Figure 7. The aim of the experiment is to prove the sustainability of smart contracts
within the IoT fog environment.

6.2 Fog recommender system algorithm

The recommender system’s algorithmic basis on fog architectures that are used as baseline inputs
obtained by the largest Cloud providers: Azure10 provides categorized cloud architecture references in our
IoT case and Google Cloud11 in the cloud architecture center offers reference to IoT architectures with
guidance, and Amazon AWS12 provides defined cloud-to-edge architecture applications. We composed
our fog architectures from the cloud providers and available architectures that will be run on our

9https://trufflesuite.com/
10https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/
11https://cloud.google.com/architecture
12https://aws.amazon.com/architecture/well-architected/

12

https://trufflesuite.com/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/
https://cloud.google.com/architecture
https://aws.amazon.com/architecture/well-architected/


algorithm 1 with different requirements. The algorithm is written in JavaScript programming language
as REST API services where the time complexity of the algorithm is quadratic, O(n2). In the worst-case
scenario, the algorithm based on two nested loops has to perform n amount of operations per iteration of
the outer loop making it a total of n ·n operations. Since the order of magnitude of up to 100 components
per IoT fog architecture, this does not represent an issue. The base data (available components,
classifications, and smart contract templates) are stored in the MongoDB database.

procedure RECOMMENDER SYSTEM
templates← dictionary of smart contract templates
fogTOSCA← architecture represented in TOSCA format
requirements← list of requirements
resultList← result list of smart contract templates
finished← false
scoring← false
while finished = false || scoring = true do // while the results are not conflicting

if scoring == true then
// loop through the fogTOSCA components and vote (relationship, capability, type)
if scoring results not equal then

return resultList
end if
if scoring results are equal then

return resultList and label conflicting templates
end if

end if
while iterate through templates do // filter each contract based on the requirements

// if conflicting contract found set scoring = true
end while
// for each component, add weight scores about relationship, capability and component type to templates
while iterate through fogTOSCA do

// if conflicts still occur set scoring = true
end while

end while
end procedure

Moreover, to compose the fog architectures used in our experimental study, we defined each architecture
in TOSCA v. 2.0 format by using a Web tool Alien4Cloud13, which provides a series of more than 90
representations of the standard definitions of cloud-to-edge components such as hypervisor, deployment,
network, server, storage, management, service, gateway, and others. As outlined in the previous section
for the main steps of the architecture, the algorithm extracts the key characteristics of the architecture,
such as relationship, capability, and type. The algorithm mainly relies on the component’s type and
relationship related to the three capability properties: feature, host, and scalable. These features are
aligned with identified classifiers. Since there are no research baseline architectures to be used, we
evaluated our recommender system’s algorithm with simulations.

We performed simulations of our recommender algorithm on three base architectures (Azure IoT reference
architecture14, Intelligent Products Essentials reference architecture15 and Smart Metering for Water
Utilities16) using different requirements, as shown in Table 2. We did not include inherited contracts in
the smart contract’s template results because they are implicitly included.

13https://alien4cloud.github.io/index.html
14https://tinyurl.com/mrp8hjdd
15https://tinyurl.com/3m9vnpba
16https://tinyurl.com/4n4ny2ea
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Table 2: Simulations of different recommender system scenarios.

IoT fog
architecture

No.
Components

Components
Type

Requirements Smart Contract
Template Results

Azure IoT
reference

architecture

21 Application,
Service, Gateway,

Management,
Device

Payment ERC-20, ERC-777,
ERC-4626,

PaymentSplitter,
VestingWallet

Intelligent
Products
Essentials
reference

architecture

19 Device,
Application,

Service, Gateway,
Storage,

Management

Fungible token,
Governance

ERC-777, Governor,
AccessControl

Smart Metering
for Water
Utilities

20 Device, Gateway,
Management,
Monitoring,

Storage, Service,
Hypervisor,

Server

Token, Polygon,
Scalability

ERC-4626,
Upgradeable- Beacon,
IFxMessageProcessor

6.3 Smart contract development time evaluation

To evaluate the performance of the recommender system in the context of the smart contracts’
development time, in December 2022, we prepared a study with 50 participants with different levels of
blockchain expertise. We targeted participants to whom we had direct access, such as undergraduate
university students, researchers, and collaborators in the ONTOCHAIN project. Each participant had
to develop four smart contracts, and each participant had to develop the smart contracts once without
the help of the recommender system and also by using the recommender system. To maintain the
moment of surprise, the order in which they received the assignments was random.

At the time of the result’s analysis, we excluded the participants who did not submit all four smart
contracts, did not pass the unit tests for the developed smart contracts, or took more than two hours
for development. As a result, we finalized the evaluation with the 36 participants passing the tasks, 27.8
% female and 72.2 % male, with ages ranging from 20 to 55 years old. In general, the participants were
36.1 % undergraduate students and 63.9 % non-students.

The results have shown that for the smart contracts that were developed without the help of the
recommender system, the participants spent an average of 50 minutes on development. In comparison, for
the smart contracts that were developed using the recommender system, they developed smart contracts
with an average of 12 minutes, which reduced the development time by 76%.

7 Discussion and conclusion

In our work, we proposed a recommender system that will simplify and accelerate the development of
decentralised IoT applications. The recommender system outputs smart contract templates based on the
system’s requirements that the IoT developer defines during the development phase. In our experimental
results, we focused on two key properties: sustainability and development time reduction.

Smart contracts initially interact with the EVM-based ledger first in the development process, which is
the most costly operation. This is expected since the entire Dapp as a programming script has to be
deployed on the ledger. Once deployed, the involved stakeholders of the system trigger functions that
update the state of the variables, execute transactions, or other purposes. Functions are compared to the
deployment of the contract, and they are significantly cheaper. Using a low-cost EVM-enabling ledger
such as Polygon makes it possible to perform most functions for less than USD 0.10 per transaction.
Thus, enabling smart contracts in fog environments is sustainable.

The quantitative results of our recommender system were addressed in the analysis of the results provided
by the algorithm. The workflow of the algorithm considers the topology of the fog architecture with

14



specified requirements. Based on our simulation of three heterogeneous IoT reference architectures, the
system provided a set of relevant smart contract templates. These templates can be merged, extended,
or modified to comply with the environment. The development process is simplified, and the overall
smart contract preparation time is reduced.

Although this work addresses important challenges for building decentralised IoT applications by using
smart contract templates proposed by the newly developed smart contract recommender system, there
are still many challenges to be tackled in future. For instance, the recommendation results may be
significantly improved if a reputation system is integrated into the recommender system. As such, the
recommender system could also categorize the smart contracts and choose standards based on their
reputation that can be based on various requirements (e.g., security, data safety, scalability, etc.).
Another important challenge in decentralising IoT applications would be the management of decisions
and service-level agreements in larger IoT systems, where various service providers play important
roles in the provision of sensor data and in computing and processing resources. By expanding the
recommender system functionalities, to update the smart contract templates based on democratic
methods for reaching a consensus, the recommender system will evolve into a decentralised autonomous
organization. This will allow seamless smart contract management operations in complex IoT scenarios,
where all relevant stakeholders would be allowed to participate in smart contract management without
having prior expertise in smart contract development. These challenges will be further researched within
the scope of the ONTOCHAIN project, and the results will be presented in our future works.
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