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Abstract: Collaboration among individuals with diverse skills and personalities is crucial to pro-
ducing high-quality software. The success of any software project depends on the team’s cohesive
functionality and mutual complementation. This study introduces a data-centric methodology for
forming Software Engineering (SE) teams centred around personality traits. Our study analysed data
from an SE course where 157 students in 31 teams worked through four project phases and were evalu-
ated based on deliverables and instructor feedback. Using the Five-Factor Model (FFM) and a variety
of statistical tests, we determined that teams with higher levels of extraversion and conscientiousness,
and lower neuroticism, consistently performed better. We examined team members’ interactions and
developed a predictive model using extreme gradient boosting. The model achieved a 74% accuracy
rate in predicting inter-member satisfaction rankings. Through graphical explainability, the model
underscored incompatibilities among members, notably those with differing levels of extraversion.
Based on our findings, we introduce a team formation algorithm using Simulated Annealing (SA)
built upon the insights derived from our predictive model and additional heuristics.

Keywords: team formation; personality traits; Software Engineering; data-driven approach;
Simulated Annealing

1. Introduction

Team formation (TF) is critical in many domains, including business, sports, and
academia [1,2]. In Software Engineering (SE), however, TF assumes a unique and pivotal
role. SE, an engineering discipline encompassing all aspects of software production [3],
is deeply rooted in collaboration. The complexity of software projects often necessitates
a team of engineers with diverse specializations, making these teams’ efficiency, commu-
nication, and synergy crucial for project success. This study aims to bridge the gap in TF
by integrating psychological metrics with machine learning techniques to optimize team
composition in SE.

Historically, TF has relied heavily on empirical metrics, but recent trends have shifted to-
wards incorporating psychological aspects to enhance team dynamics and performance [4].
The dynamics of how team members interact and engage with each other are crucial in SE.
Research has consistently shown a strong correlation between positive team dynamics and
the success of high-performing teams [5–8]. However, integrating psychological traits into
automated TF systems, especially in SE, requires further exploration.

This gap is particularly evident when considering the subtler yet influential fac-
tor of team members’ psychological and personality traits. These traits can profoundly
impact how individuals approach problems, interact with colleagues, and respond to
stress or success. There has been a growing interest in using personality frameworks,
such as the Big Five Personality Traits, to build technically proficient and psychologically
compatible teams.

The following section reviews the existing literature to identify gaps and limitations
and inform our proposed solution. Subsequent sections outline our methodologies, describe
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the data collection process, detail the models used, and provide an initial overview of the
proposed algorithm. This is followed by a presentation of our results, encompassing an
overview of the collected data, the trained model, and the newly developed TF algorithm.
The paper concludes with a discussion of our findings, summarizing our contributions,
acknowledging limitations, and suggesting guidelines for future research.

2. Related Work

The interplay between individual personality traits and team performance, particularly
in collaborative and skill-intensive environments, has been widely studied. A hierarchical
model developed by [9] categorizes key personality facets vital for team performance,
offering a detailed understanding of how broad personality traits correlate with specific
team requirements. This model utilizes specific facets of higher-level dimensions, such
as adjustment, flexibility, and dependability, to predict team adaptability, interpersonal
cohesion, and decision making.

A study by [10] investigated the impact of personality traits on the performance
of product design teams comprising undergraduate engineering students. The findings
indicated a significant positive correlation among conscientiousness, openness, and team
performance. In the study, groups of three students were tasked with building a bridge
using limited resources, emphasizing the profound influence of personality traits over
other factors, including cognitive ability and demographic diversity.

Research by [11] delved into the predictive capacity of conscientiousness facets within
engineering student project teams over a 6.5-month-long task. The primary conclusion was
that conscientiousness effectively forecasted team performance. However, it was noted that
other traits, such as agreeableness, extraversion, and neuroticism, did not have a significant
predictive impact on team performance.

In the realm of SE, ref. [12] assessed the impact of personality traits on SE team effec-
tiveness using the Myers–Briggs Type Indicator (MBTI). They highlighted the significant
role of personality clashes in software project failures and pointed out a gender-based
variance in MBTI traits among programmers. Suggestions for optimal trait balances for
male and female team members were presented.

The research study [13] undertook a systematic literature review from 1970 to 2010
centring on individual personalities in SE. The review offers an extensive overview of the
field’s current understanding, notably highlighting the diversity of results.

The study [14] provided direct evidence of the impact of specific personality traits
in an SE context, emphasizing the significance of extraversion in promoting effective
team dynamics. Additionally, the study revealed that openness to experience positively
correlates with team performance, not team climate. However, the limited sample size of
respondents might limit the generalizability of these findings.

In their research, ref. [15] mapped the job requirements of various SE roles to the Big
Five Personality Traits, suggesting specific personality traits beneficial for different SE roles.
This mapping includes the need for extraversion and agreeableness in system analysts;
openness and conscientiousness in software testers; and a combination of extraversion,
openness, and agreeableness in programmers.

The authors in [16] extended the application of personality traits in team dynamics
to an educational perspective, focusing on team dynamics within the context of student
programming projects. This study addresses the gap between academic projects and real-
world software development, offering insights into managing and facilitating student
projects that closely mimic professional environments.

In reviewing the foundational work of [9], we see a detailed model of personality
facets relevant to team performance. Although theoretically robust, the model does not
offer a direct pathway for practical application in SE team assembly.

Similarly, the study by [12] proposed guidelines for balancing teams based on members’
traits and gender but did not provide a practical framework for applying these findings.
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The predominant theme in these studies is an in-depth theoretical exploration of
personality impacts and extensive data analysis. However, there is a noticeable lack of tools
or methods designed to practically apply these insights to forming SE teams. Furthermore,
there is minimal focus on the automated prediction of team members’ interactions and
performance. While guidelines are provided, their practical implementation in real-world
scenarios is constrained due to the extensive manual labour required for their application.

3. Proposed Solution

In our work, we address the gap in TF by introducing a data-driven approach tai-
lored for SE. Recognizing the limitations in practical applications highlighted by previous
studies, our approach builds upon their theoretical foundations. We focus on develop-
ing practical solutions that are informed by methodological advancements. Our key
contributions include the following:

• Data collection in a controlled SE environment: Our research involved collecting
data on key aspects, such as personality traits, team performance, and inter-member
satisfaction. The collection was carried out in a controlled SE environment, which
helped ensure that our data were accurate and relevant to typical SE settings.

• Predictive model for inter-member satisfaction: We developed a predictive model
with our collected data. This model is aimed at understanding and forecasting inter-
member satisfaction in SE teams. It considers various factors, such as personal-
ity traits and work contributions, providing valuable insights into team dynamics
and cohesion.

• Team formation algorithm: Our algorithm integrates the predictive model directly,
utilizing its forecasts and various heuristics to aid in forming effective SE teams.
Designed with practical implementation in mind, it provides a systematic method for
real-world team assembly. The algorithm functions by accepting participants with
associated personality traits as input and outputting strategically formed teams.

To conduct our research, we relied on established methods. Figure 1 visually summa-
rizes our approach, illustrating these methods’ integration in addition to data collection
and a high-level overview of the proposed TF algorithm. Section 4.1 further describes the
process of data acquisition. We used the Five-Factor Model (FFM) (see details in Section 4.2)
to assess personality traits, the Extreme Gradient Boosting algorithm (XGBoost) (see details
in Section 4.3) for developing our predictive model, and Simulated Annealing (SA) (see
details in Section 4.4) for our TF algorithm (see details in Section 4.5). Python was our
primary tool for data analysis.
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Figure 1. Overview of the proposed approach.

4. Materials and Methods
4.1. Data Acquisition and Description

Data for this study were sourced from the mandatory course Software Engineering
at the Faculty of Computer and Information Science, University of Ljubljana. The study
encompassed 157 third-year undergraduates, divided into 31 teams of 5 to 6, whose
contributions were anonymized for analysis. The course’s curriculum was segmented into
four stages: project proposal, requirement gathering, solution design, and implementation.
The project phases spanned 3 months, each lasting 2–3 weeks.

Before the project began, students completed a 41-item psychometric questionnaire
based on the Five-Factor Model, utilizing a 5-point Likert scale to gauge personality traits
for insights into team dynamics. Following each phase, surveys were collected to assess
team satisfaction, focusing on performance, communication, and individual contributions.

Version control was managed using Git within a GitHub organization, allowing for
the extraction of commit data, including the number of commits and lines of code. After
each stage, teaching assistants evaluated the teams’ deliverables using a 0–100 scale.

4.2. Five-Factor Model

The Five-Factor Model, also known as the OCEAN model, is a prominent psychological
framework for evaluating human personality along five key dimensions: openness (O),
conscientiousness (C), extraversion (E), agreeableness (A), and neuroticism (N) [17]. In
our study, participants underwent a standardized test to measure these dimensions. Each
questionnaire item aligns with a specific dimension and carries an “influence value”,
denoted by I(q), reflecting the question’s framing.

Particularly, when a question negatively correlates with the trait it assesses, the cor-
responding response, R(q), is inverted to represent the trait accurately. To quantify the
dimension score (S) for a set of related questions (Q), we calculate S as the weighted sum
of the responses (R(q)) and their respective influence values (I(q)), normalized to the
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maximum possible score for that set, max_score(Q). Mathematically, this is represented as

S =
∑q∈Q R(q)×I(q)
max_score(Q)

.
Despite some criticism, such as not fully accounting for all variances in human person-

ality [18] or the lack of complete independence among variables [19], the FFM is a reliable
and valid model for measuring personality traits in SE domains [20].

4.3. Xgboost and Shapley Additive EXplanations

To create a predictive model focusing on the assessment of inter-member satisfaction,
we employed the Extreme Gradient Boosting algorithm, widely recognized as XGBoost.
XGBoost is an open-source machine learning framework known for its computational effi-
ciency and robust performance metrics. As a type of ensemble learning, it is an optimized
version of gradient-boosted decision trees tailored for speed and accuracy. Noteworthy
features of XGBoost include its built-in capacity to handle missing data, support for parallel
processing, and its versatility in addressing a diverse range of predictive problems [21].

In addition to model prediction, interpretability is crucial when dealing with large
“black box” machine learning models. This research uses Shapley Additive EXplanations
(SHAP) to provide a detailed understanding of feature influence on predictions [22].

4.4. Simulated Annealing

To address the NP-hard challenge of TF, we employed Simulated Annealing [23], a
heuristic optimization algorithm. The algorithm was designed to optimize the composition
of student teams by using heuristics from the FFM and the XGBoost predictive model. SA
initiates with a solution (Sinit) and, in each iteration, generates a new candidate solution
(S′) from the neighbourhood (N(S)) of S. The acceptance of S′ over S is dictated by the
Metropolis criterion, which considers the change in objective function ∆E = E(S′)− E(S).
A solution S′ is accepted if ∆E ≤ 0 or if a randomly generated number between 0 and 1 is
less than exp(−∆E/T), where T is the current temperature. The algorithm iterates for a
fixed number of iterations (Nstop) and returns the most optimized solution found.

4.5. Overview of the Team Formation Algorithm

The TF algorithm is designed to input a collection of participants and output optimally
assembled teams. It primarily processes participant data characterized using the FFM
personality assessment. The algorithm necessitates specifying the quantity and size of the
teams, ensuring that the total aligns with the student count. Additionally, it involves setting
weights for the objective function, which aims to balance the sub-scores across teams while
maximizing them overall. The algorithm operates through three primary processes:

1. Simulated Annealing: This stage involves generating new candidate teams and pro-
gressively lowering the system’s temperature.

2. Satisfaction evaluation: Utilizing the XGBoost predictive model, this step assesses the
satisfaction levels within each group. This metric is incorporated into the objective
function.

3. Scoring and decision making: Each team’s score is computed using the designated
objective function. Based on the criteria set by the Simulated Annealing process, the
algorithm decides whether to accept or reject the new team formations.

The output is a structured array of teams, each with assigned members. The algorithm
maintains equitable scores across teams while maximizing individual member satisfac-
tion. For an in-depth discussion on the objective function and additional details, refer to
Section 5.5. The process is graphically represented in Figure 2.
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5. Results
5.1. Data Overview
5.1.1. Phase Results

After each project phase, students were evaluated and graded by TAs. The grading
criteria were based on quantifiable aspects, such as the volume of work completed, project
deliverables, and the overall quality of the work. Rather than team grades, individual
grades were assigned on a scale from 0 to 100. These grades were communicated to each
student during a meeting with the TA and their respective team. The distribution of these
grades across different phases is illustrated in the histograms shown in Figure 3.
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Figure 3. Histograms of grades assigned to individual students in each phase.

The average grades for the first two phases were relatively consistent, with µ1 = 77.7 for
the first phase and µ2 = 77.8 for the second. However, the third phase proved more
challenging, reflected by a drop in the average grade to µ3 = 73.0. The average grade
increased again in the fourth phase to µ4 = 84.0. This pattern aligns with student feedback,
which indicated that the third and fourth phases were the most difficult. The improved
performance in the fourth phase can be attributed to its focus on project implementation, a
task with which the students were the most familiar.

5.1.2. FFM Data

Aggregate data of the distribution of students are depicted in Table 1. We compared
the results to a study on the effect of teammate personality on team production [24]. Our
observed average for conscientiousness stands at 0.69, exceeding the 0.59 reported in the
referenced study. This disparity can be attributable to our participants being in their third
academic year, suggesting a more developed work ethic than first-year undergraduates.
Our dataset displayed slightly higher averages for openness (0.67) and agreeableness (0.61).
In contrast, extraversion averaged at 0.54, a significant deviation from the 0.75 cited in the
comparative study. Neuroticism showcased consistency across both datasets, with our
average resting at 0.37 compared to 0.38 in the reference study.



Electronics 2024, 13, 178 7 of 17

Table 1. Means and standard deviations of the FFM personality traits.

Openness Conscientiousness Extraversion Agreeableness Neuroticism

Mean 0.67 0.69 0.55 0.61 0.38
Std 0.15 0.14 0.14 0.13 0.16

To measure the linear relationship of each pair of traits, we constructed a correlation
matrix utilizing the PCCs. The values in this matrix span the interval [−1, 1]. A value
approaching 1 indicates a strong positive relationship, while a value nearing −1 signifies a
pronounced negative relationship. Conversely, values proximate to 0 indicate minimal to
non-existent correlation.

Key insights derived from the correlation matrix, presented in Table 2, are as follows:

• Conscientiousness and neuroticism: A moderate negative correlation (r = −0.33) was
observed between conscientiousness and neuroticism. This suggests that individuals
scoring higher in conscientiousness tend to exhibit fewer neurotic traits.

• Extraversion and openness: The data indicated a positive correlation (r = 0.20)
between extraversion and openness.

• Conscientiousness and extraversion: A notable correlation existed between conscien-
tiousness and extraversion, evidenced by a coefficient of r = 0.23.

The observed relationships in the first two points are consistent with prior research [25,26].
The third point, however, presents an ambiguous relationship, which could be attributed to
the limited sample size or the specific demographic characteristics of the student population
studied.

Table 2. Correlation matrix of FFM dimensions among students. Symbols denote significance levels:
* p < 0.05, ** p < 0.01, *** p < 0.001.

O C E A N

O (openness) -
C (conscientiousness) 0.18 * -
E (extraversion) 0.20 * 0.23 ** -
A (agreeableness) 0.18 * 0.00 −0.01 -
N (neuroticism) −0.07 −0.33 *** −0.17 * −0.08 -

5.1.3. Repository Commit Data

Git data were collected from each team’s repository, into which students committed
their code and documentation. The initial dataset comprised 59,305 commits harvested from
the git repositories of the student teams. Several filtering steps were implemented to ensure
relevance and accuracy. Commits outside the project deadlines were excluded to align with
the grading period. Additionally, commits with erroneous timestamps—attributable to
misconfigured git clients—were removed. Non-source-code elements like tool-generated di-
rectories (for example node_modules generated by a package manager) and build artefacts,
which do not represent a developer’s effort, were also omitted.

Furthermore, commits that merely consisted of minified CSS files within documenta-
tion directories—often a byproduct of wireframe creation—were considered non-essential
and were excluded. A noticeable pattern of commits with large but equal counts of line
additions and deletions was attributed to code formatting tools. To address this, commits
were filtered using a heuristic that targeted those with line modifications exceeding 50,
ensuring that trivial style changes did not inflate the data.

After these preprocessing steps, the commit count was refined to 28,466, representing
approximately 48% of the initial volume. A visual representation of the filtered commit
activity across teams is shown in Figure 4. The vertical dashed orange lines represent the
deadlines for individual phases.
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Figure 4. Stripplot of filtered-out commits of various groups. The vertical dashed orange lines
represent the deadlines for individual phases.

5.2. Team Performance and FFM Dimensions

We define team performance as the arithmetic mean of grades in each project phase.
Using the median performance as the separation criterion, teams were classified as high-
performing or low-performing teams, as depicted in Figure 5. The variations in FFM
dimensions between these groups were statistically significant and aligned with previous
research, confirming the following:

1. Openness and agreeableness do not have a meaningful effect on team performance.
Contrary to the assumption that teams with open or agreeable members perform
better, the data do not support this claim.

2. Conscientiousness has been confirmed in past research [24] to have a positive associa-
tion with team performance. Teams with organized, dependable, and hardworking
members tend to outperform others.

3. Neuroticism hurts how teams fare, which aligns with previous findings [10]. High
neuroticism in individuals can lead to challenges within the team, affecting overall
effectiveness.

4. Extraversion plays a complex role. Although it has advantages and disadvantages, it
positively influences team performance in our dataset. Since computer science stu-
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dents may generally be more introverted, extroverted members can be advantageous.
Their engagement can counterbalance any issue, like dominating conversations.
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Figure 5. Box plots with outliers of the FFM dimensions.

Before assessing the significance of our findings, we checked if the conditions for a
parametric t-test were met. Levene’s test confirmed that the variances between the two
groups were equal. However, the Shapiro–Wilk test revealed that only the extraversion and
conscientiousness dimensions were normally distributed. Considering these points, we
opted for the non-parametric Mann–Whitney U test to examine the mean differences across
the dimensions. The test highlighted significant differences between high-performing
and low-performing teams in the following dimensions: conscientiousness (p = 0.005),
extraversion (p = 0.0001), and neuroticism (p = 0.004).

5.3. Analysis of Team Satisfaction Metrics

In evaluating team satisfaction during post-project phases, two distinct metrics were
employed. The first, a rating scale, R1 ∈ [−2, 2], measured individual satisfaction levels,
with −2 indicating very low satisfaction and 2 denoting high satisfaction with team mem-
bers’ contributions. Each team member received a non-unique score from their peers. The
second metric, a ranking system, R2 ∈ [1, len(teams)], assigned each member a unique
rank, with 1 representing the highest satisfaction level.

Team satisfaction was quantified as the normalized sum of all inter-member satisfac-
tion scores, calculated using the formula

T =
∑n

i=1 ∑n
j=1,j ̸=i

sij
n−1

n
(1)

where sij is the satisfaction score assigned by member i to member j, which could be
either R1 or R2, and n is the total number of team members. The condition j ̸= i excludes
self-assessment scores.

Using R1 as sij, team satisfaction was calculated for each project phase, and the results
are depicted in Figure 6. Phases 2 and 4 showed a notable positive correlation between
team satisfaction and performance, with correlation coefficients of r = 0.39 and r = 0.32.
However, Phase 1 exhibited a weak or non-existent relationship, possibly due to initial
adjustments among team members. Phase 3’s average scores were 5 points lower than the
first two phases, leading to reduced satisfaction levels, particularly when outcomes did not
meet expectations.



Electronics 2024, 13, 178 10 of 17

0 1 2
Satisfaction

40

50

60

70

80

90

100

A
ve

ra
ge

m
ar

k

r = 0.03

Phase 1

0 1 2
Satisfaction

40

50

60

70

80

90

100

A
ve

ra
ge

m
ar

k

r = 0.39

Phase 2

0 1 2
Satisfaction

40

50

60

70

80

90

100

A
ve

ra
ge

m
ar

k

r = −0.09

Phase 3

0 1 2
Satisfaction

40

50

60

70

80

90

100

A
ve

ra
ge

m
ar

k

r = 0.32

Phase 4

Figure 6. Regression plot of team satisfaction versus team performance for each project phase.

While R1 correlates with performance, its suitability for our TF method is questionable
due to potential data skewness, defined as

Skewness (g1) =
n

(n − 1)(n − 2) ∑
(

xi − x̄
s

)3
(2)

Our dataset’s skewness was −1.22, indicating strong negative skewness. The Intraclass
Correlation Coefficient (ICC) [27] further revealed inconsistencies in the data, possibly due
to biased evaluations by students concerned about peer grades.

Consequently, we use the ranked work contribution score (R2) for further analysis.
ICC(3,k) tests on R2 showed adequate consistency, with 61 out of 108 groups (56.48%)
achieving an ICC over 0.5, and 72 groups (66.67%), one exceeding 0.4. These thresholds
were based on varied interpretations of the ICC value [28,29]. The chosen threshold is
deemed good by both standards. This indicates a general agreement on the top contributors,
though not unanimous.

A hypothesis for subsequent investigation is that a significant portion of these rankings
could be explained by tangible metrics, like commit counts and lines of code, with the
remaining variance potentially being linked to distinct personality traits within the teams.

Work Contribution

To effectively measure individual contributions during different project phases, we
introduce a metric denoted as work_ration, with n representing the project phase. This
metric is derived from Git data, following a specific preprocessing approach.

The calculation of work_ration involves several steps:

1. The number of lines each member adds (m) is normalized by taking the square root.
This adjustment favours smaller, frequent commits instead of larger, sporadic ones.
Lines that have been removed are not considered, as they do not reliably indicate
work contribution.

2. The normalized line additions for each member (m) are summed up.
3. The total normalized line additions for the team (t) are calculated.
4. The expected work ratio (r) per student is determined as r = 1

len(team) . For example, in
a five-member team, the expected ratio is 0.2.

5. The individual contribution proportion (p) is computed as p = m
t .

6. Finally, the work ratio for phase n is calculated as work_ration = p
r .

The work_ration metric provides insights into a student’s relative contribution:

• A value above 1 indicates contributions exceeding expectations.
• A value below 1 suggests contributions falling short of expectations.
• A value around 1 implies contributions meeting expectations.

The relationship between work contribution and ranking is examined using regression
plots (Figure 7). It is important to interpret these findings correctly:

• A lower work contribution suggests that the student contributed more than expected.
• A higher work contribution indicates that the student contributed less than expected.
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Figure 7. Regression plots of member work contribution ranking versus calculated member work
(work_ratio) for each project phase.

The correlation coefficients for each project phase are as follows: r1 = −0.44,
r2 = −0.39, r3 = −0.38, and r4 = −0.60. These values indicate a moderate negative
correlation between work contribution and ranking. However, the correlation is not strong
enough to fully explain the variance in rankings. The following section will explain the
remaining variance using gradient boosting.

5.4. Binary Classification of Inter-Member Satisfaction

We want to predict whether two members will successfully collaborate based on their
personality traits. We use the R2 metric as the target variable to achieve this and employ
the XGBoost algorithm to create a binary classifier that predicts whether two members will
be satisfied with each other. To train this classifier, we use the following features:

• Features 1. . . 5: OCEAN scores of the Ranker member.
• Features 6. . . 10: OCEAN scores of the Target member.
• Feature 11: The workn ratio of the Target member.

The Ranker is designated as the student responsible for assessing the Target student. In
our approach, rather than both ratios, we solely incorporate the workn ratio of the Target.
This decision is based on our strategy to set this variable as a constant during the prediction
phase. While adding a second variable might potentially enhance the model’s accuracy in
the training phase, it is anticipated that it could diminish accuracy in practical application
within the TF algorithm.

A dataset of 3108 data points was constructed by pairing each member with another
team member. The dataset was split into a training set of 2486 data points and a test set
of 622 data points following an 80:20 training–test split. The model was trained using a
grid search with cross-validation to identify the best hyperparameters. The optimal model
configuration required 300 estimators, a max depth of 12, and a learning rate of 0.1. The model
yielded accuracy of 0.74, precision of 0.69, and an ROC-AUC score of 0.79.

To explain how the model works, we utilized SHAP. The beeswarm summary plot,
shown in Figure 8, displays the feature importance of the XGBoost model. The most
important feature is the workn ratio of the Target member, followed by the Target member’s
OCEAN scores and, finally, the Ranker member’s OCEAN scores.

The two SHAP waterfall plots in Figure 9 were created to assess how the model works.
In the negative classification example, we can see that the low amount of work (5× less
than expected) performed by the target student was the main reason for the negative
classification but above-average neuroticism also contributed. In the positive classification
example, we can see that the high amount of work nudges the classification to be positive.
At the same time, the interplay between the Raters’ and Target’s FFM dimensions cancels out.

The dependence plot in Figure 10 suggests that team satisfaction is positively in-
fluenced when Rater and Target have similar extraversion levels. High extraversion
in both tends to skew predictions positively, while diverging levels yield adverse out-
comes. Similar trends were observed for conscientiousness and neuroticism, reinforcing
the model’s validity.
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Figure 8. SHAP beeswarm plot of the XGBoost model displaying feature importance for Rater (R)
and Target (T) variables.

Figure 9. Waterfall plots of SHAP values for the XGBoost model, illustrating the influence of
individual features on the prediction. (a) Represents a positive classification. (b) Represents a
negative classification.
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Figure 10. SHAP dependence plot of Raters’ (R) and Targets’ (T) extraversion. The dashed lines
represent a linear fit applied to the most prominent data points from opposite extremes.

5.5. Team Formation Algorithm Evaluation

Based on prior observations, the following heuristics were established for effective
team formation:

• Maximize inter-team R2 to enhance team performance.
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• Ensure teams exhibit high levels of conscientiousness (Qc) and extraversion (Qe).
• Aim for low levels of neuroticism (Qn) within teams.
• Maintain minimal standard deviation across teams for each dimension: Qc, Qe,

and Qn.
• Incorporate at least one student with high conscientiousness (studentmax (c)) in each

team, as suggested by [24]. This approach triggers a beneficial “conscientiousness
shock,” improving team dynamics.

The Simulated Annealing algorithm was implemented with the following parameters:

1. Initial solution (Sinit): Teams are formed randomly considering team size distributions,
with the constraint that each team includes a student with high conscientiousness.
This is achieved by selecting the top N students, where N equals the number of teams.
These students are given locked status to prevent team swaps.

2. Generation of new solution (S′): A candidate solution is formed by exchanging two
students between different teams while ensuring that students with locked status
remain fixed.

3. Objective function (E(S)): The function E(S) = winter × QTinter +wc × Qc +we × Qe +
wn × NQn integrates various dimensions, such as interpersonal satisfaction (QTinter),
conscientiousness (Qc), extraversion (Qe), and neuroticism (NQn). Weights winter, wc,
we, and wn allow for the adjustment of each dimension’s influence.
Inter-member satisfaction (QTinter): For a team Tk, the average satisfaction (µTk ) is
calculated using the binary classifier’s predictions (p( fi,j)) for each student pair.
The global average and standard deviation across all teams are computed to derive
QEinter = µ − σ.
Scores for Q and NQ: For each dimension, the team average (µTk ) and global averages
(µ and σ) are computed. The resulting scores are defined as Q = µ − σ for Qc and Qe,
and NQ = (1 − µ)− σ for Qn.

4. Stopping condition: The algorithm stops after Istop = 710N − 1740 iterations, where
N is the number of teams. This formula is based on a linear regression model, with a
minimum threshold of 6000 iterations for N < 10.

We evaluated the proposed algorithm by comparing it with other methodologies and
dimensions, as detailed below:

1. Shuffled: Teams were formed randomly from a predefined set of students.
2. Course: This method represents the teams in their original formation during the

course. Although this data point might appear similar to the Shuffled method, it was
included separately, as the students’ choices could have influenced team compositions.

3. Sorted by conscientiousness: Students were ranked according to their conscientious-
ness scores and then assigned to teams in a round-robin fashion. This method was
employed to compare the SA algorithm’s performance with a basic heuristic.

Figure 11 illustrates the operation of the SA algorithm and its comparison with the
aforementioned methodologies. The first scenario (left) displays the application of the
algorithms on the original dataset, whereas the second scenario (right) applies them to
a synthetic dataset. This synthetic dataset was generated by calculating the mean and
standard deviation for each dimension of the original dataset and then creating a new
dataset with an equivalent number of students and teams. Random values from a normal
distribution, based on the mean and standard deviation of the original data, were used
to populate this new dataset. This approach aimed to test the algorithm’s robustness and
confirm that the peculiarities of the original dataset did not bias the results. In the SA
algorithm, the weights applied were wc = 2, we = 1, wc = 1, and winter = 0.75. These were
chosen to underscore the importance of the conscientiousness dimension while ensuring
balanced representation across other dimensions.
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Figure 11. Distribution of scores before and after SA algorithm using 10,000 iterations, with weights
of the objective function wc = 2, we = 1, wc = 1, and winter = 0.75

In the analysis of the original data, the Sorted by conscientiousness method yielded the
lowest score, with E(s) = 1.66, followed by the Shuffled and Course methods, each scoring
E(s) = 1.70. In contrast, the SA algorithm consistently outperformed these approaches,
achieving an average score of E(s) = 2.14. Notably, the conscientiousness dimension,
evaluated separately, matched the performance of the third method, with E(s)c = 0.67.
This indicates that the SA algorithm effectively sorts students based on conscientiousness
and maintains a balanced distribution across the other dimensions.

To contextualize the computational efficiency of our algorithm, one can consider
the total number of unique team configurations that would be examined in an exhaus-
tive combinatorial search. Utilizing the formula (number of students

number of teams ), an exhaustive evalu-
ation for selecting just one team of 5 from a pool of 150 participants would necessitate
investigating 591,600,030 distinct combinations. In stark contrast, the SA algorithm sub-
stantially mitigates this computational demand. Specifically, it required searching only
710 × 30 − 1740 = 19,560 configurations to achieve the results presented in Figure 11.

6. Discussion

Our research focused on the Five-Factor Model of personality traits, hypothesizing
that these data could positively affect team formation. Numerous studies support this
idea [4,9–12,14,15], showing the impact of personality traits on team dynamics and perfor-
mance. Our findings indicate that traits like conscientiousness and extraversion tend to
improve team performance, while neuroticism tends to hinder it. Different studies high-
light various traits. For example, [14] also found that extraversion and openness positively
impact team performance but other traits had a lesser effect.

In contrast, ref. [11] pointed out the importance of conscientiousness but found other
traits less significant. These differences might be due to the different study environments,
participant groups, and research methods. As [12] notes, gender is important in team
dynamics. However, many studies, ours included, mostly have participants of one gender,
which limits the ability to consider gender differences fully.

Our study distinguished itself from others through our approach to data utilization.
Beyond collecting psychometric data, we integrated information from Git repositories and
team satisfaction surveys over an extended period. This integration provided a comprehen-
sive view of team dynamics and performance. Utilizing this dataset, we developed a model
capable of predicting team satisfaction with accuracy of 74% and precision of 69%. Despite
the challenges posed by the limited size of our dataset and the complexities inherent in
modelling human interactions, these performance metrics are noteworthy.

There were confounding factors not fully accounted for in our study, such as the
technical skills of the students and their pre-existing relationships. Given that TF was
largely random, it is plausible that some students had prior connections through earlier
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courses or projects, potentially influencing team dynamics. Although our model has some
limitations, its practical application demonstrated potential for success. When applied
repeatedly within the TF algorithm, the predictive model effectively contributed to the
formation of better-performing teams.

7. Conclusions

This study explored the impact of the Five-Factor Model of personality traits on team
dynamics, analysing data from 157 third-year undergraduates formed into 31 teams. The
results showed that teams typically perform better with more extroverted and conscientious
but less neurotic members. Using an XGBoost model, we successfully predicted team satis-
faction with 74% accuracy and 69% precision. We also introduced an innovative method
for automatically forming teams based on the FFM. By applying a Simulated Annealing
technique, we developed an efficient algorithm that effectively groups participants accord-
ing to specific criteria. This method ensures a well-balanced distribution of personality
traits among teams and enhances overall member satisfaction.

Our study’s approach involved collecting a diverse range of variables about the
participants, but the limitations primarily stem from the scope of the data collected. To
enhance the model’s precision, a broader dataset is essential. A single course was used,
which limited the generalization of our findings. Expanding the range of variables to
include factors like technical skills and gathering data from various courses with a more
diverse participant group could mitigate gender biases and other disparities. Additionally,
the study did not sufficiently focus on the impact of participants’ technical abilities and the
influence of varied roles within SE projects on team dynamics, since the project required all
students to perform similar tasks.

Our recommendation for future research is to broaden the scope of the study by
including a more comprehensive range of courses and a larger, more diverse group of
participants. Additionally, integrating data on technical proficiencies and specific roles
within teams could offer deeper insights into the nuances of team dynamics.
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O Openness
C Conscientiousness
E Extraversion
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References
1. Zainal, D.; Razali, R.; Mansor, Z. Team Formation for Agile Software Development: A Review. Int. J. Adv. Sci. Eng. Inf. Technol.

2020, 10, 555. [CrossRef]
2. Budak, G.; Kara, I.; Ic, Y.; Kasimbeyli, R. New mathematical models for team formation of sports clubs before the match. Cent.

Eur. J. Oper. Res. 2019, 27, 93–109. [CrossRef]
3. Sommerville, I. Software Engineering, 9th ed.; Addison-Wesley: Bruke, WA, USA, 2010.
4. Costa, A.; Ramos, F.; Perkusich, M.; Dantas, E.; Dilorenzo, E.; Chagas, F.; Meireles, A.; Albuquerque, D.; Silva, L.; Almeida, H.;

et al. Team Formation in Software Engineering: A Systematic Mapping Study. IEEE Access 2020, 8, 145687–145712. [CrossRef]
5. Fiore, S.; Salas, E.; Cuevas, H.; Bowers, C. Distributed coordination space: Toward a theory of distributed team process and

performance. Theor. Issues Ergon. Sci. 2003, 4, 340–364. [CrossRef]
6. Mathieu, J.E.; Rapp, T.L. Laying the foundation for successful team performance trajectories: The roles of team charters and

performance strategies. J. Appl. Psychol. 2009, 94, 90–103. [CrossRef] [PubMed]
7. Burke, S. Is there a “Big Five” in Teamwork? Small Group Res. 2005, 36, 555–599.
8. Fiore, S.M.; Schooler, J.W. Process mapping and shared cognition: Teamwork and the development of shared problem models. In

Team Cognition: Understanding the Factors that Drive Process and Performance; American Psychological Association: Washington, DC,
USA, 2004.

9. Driskell, J.E.; Goodwin, G.F.; Salas, E.; O’Shea, P.G. What makes a good team player? Personality and team effectiveness. Group
Dyn. Theory Res. Pract. 2006, 10, 249–271. [CrossRef]

10. Kichuk, S.L.; Wiesner, W.H. The big five personality factors and team performance: Implications for selecting successful product
design teams. J. Eng. Technol. Manag. 1997, 14, 195–221. [CrossRef]

11. O’Neill, T.A.; Allen, N.J. Personality and the Prediction of Team Performance. Eur. J. Personal. 2011, 25, 31–42. [CrossRef]
12. Gilal, A.; Jaafar, J.; Omar, M.; Basri, S.; Izzatdin, A. Balancing the Personality of Programmer: Software Development Team

Composition. Malays. J. Comput. Sci. 2016, 29, 145–155. [CrossRef]
13. Cruz, S.; Da Silva, F.; Monteiro, C.; Santos, C.; Dos Santos, M. Personality in software engineering: Preliminary findings from a

systematic literature review. In Proceedings of the 15th Annual Conference on Evaluation & Assessment in Software Engineering
(EASE 2011), Durham, UK, 11–12 April 2011; IET: Stevenage, UK, 2011; pp. 1–10. [CrossRef]

14. Soomro, A.B.; Salleh, N.; Nordin, A. How personality traits are interrelated with team climate and team performance in software
engineering? A preliminary study. In Proceedings of the 2015 9th Malaysian Software Engineering Conference (MySEC),
Kuala Lumpur, Malaysia, 16–17 December 2015; pp. 259–265. [CrossRef]

15. Rehman, M.; Mahmood, A.K.; Salleh, R.; Amin, A. Mapping job requirements of software engineers to Big Five Personality Traits.
In Proceedings of the 2012 International Conference on Computer & Information Science (ICCIS), Kuala Lumpur, Malaysia, 12–14
August 2012; pp. 1115–1122. [CrossRef]

16. Scott, T.J.; Tichenor, L.H.; Bisland, R.B.; Cross, J.H. Team dynamics in student programming projects. ACM Sigcse Bull. 1994,
26, 111–115. [CrossRef]

17. Costa, P.; McCrae, R. The Five-Factor Model, Five-Factor Theory, and Interpersonal Psychology. In Handbook of Interpersonal
Psychology: Theory, Research, Assessment, and Therapeutic Interventions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 91–104.
ISBN 9780470471609. [CrossRef]

18. John, O.P.; Srivastava, S. The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of
Personality: Theory and Research; Guilford Press: New York, NY, USA, 1999.

19. Ashton, M.; Lee, K.; Goldberg, L.; de Vries, R. Higher Order Factors of Personality: Do They Exist? Personal. Soc. Psychol. Rev.
2009, 13, 79–91. [CrossRef] [PubMed]

20. Jia, J.; Zhang, P.; Zhang, R. A comparative study of three personality assessment models in software engineering field. In
Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
23–25 September 2015; pp. 7–10. [CrossRef]

21. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA,
2016; pp. 785–794. [CrossRef]

22. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information
Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran
Associates, Inc.: New York, NY, USA, 2017; Volume 30.

23. Luke, S. Essentials of Metaheuristics, 2nd ed.; Lulu: Morrisville, NC, USA, 2013.
24. Hancock, S.A.; Hill, A.J. The effect of teammate personality on team production. Labour Econ. 2022, 78, 102248. [CrossRef]

http://doi.org/10.18517/ijaseit.10.2.10191
http://dx.doi.org/10.1007/s10100-017-0491-x
http://dx.doi.org/10.1109/ACCESS.2020.3015017
http://dx.doi.org/10.1080/1463922021000049971
http://dx.doi.org/10.1037/a0013257
http://www.ncbi.nlm.nih.gov/pubmed/19186898
http://dx.doi.org/10.1037/1089-2699.10.4.249
http://dx.doi.org/10.1016/S0923-4748(97)00010-6
http://dx.doi.org/10.1002/per.769
http://dx.doi.org/10.22452/mjcs.vol29no2.5
http://dx.doi.org/10.1049/ic.2011.0001
http://dx.doi.org/10.1109/MySEC.2015.7475230
http://dx.doi.org/10.1109/ICCISci.2012.6297193
http://dx.doi.org/10.1145/191033.191076
http://dx.doi.org/10.1002/9781118001868.ch6
http://dx.doi.org/10.1177/1088868309338467
http://www.ncbi.nlm.nih.gov/pubmed/19458345
http://dx.doi.org/10.1109/ICSESS.2015.7338995
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1016/j.labeco.2022.102248


Electronics 2024, 13, 178 17 of 17

25. Linden, D.v.d.; Nijenhuis, J.t.; Bakker, A.B. The General Factor of Personality: A meta-analysis of Big Five intercorrelations and a
criterion-related validity study. J. Res. Personal. 2010, 44, 315–327. [CrossRef]

26. ICERI 2015: 8th International Conference of Education Research and Innovation, Seville (Spain), 16–18 November 2015: Proceedings; Iated
Academy: Casablanca, Morocco, 2015.

27. Liljequist, D.; Elfving, B.; Roaldsen, K.S. Intraclass correlation: A discussion and demonstration of basic features. PLoS ONE 2019,
14, e0219854. [CrossRef] [PubMed]

28. Cicchetti, D. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instrument in
Psychology. Psychol. Assess. 1994, 6, 284–290. [CrossRef]

29. Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr.
Med. 2016, 15, 155–163. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jrp.2010.03.003
http://dx.doi.org/10.1371/journal.pone.0219854
http://www.ncbi.nlm.nih.gov/pubmed/31329615
http://dx.doi.org/10.1037/1040-3590.6.4.284
http://dx.doi.org/10.1016/j.jcm.2016.02.012
http://www.ncbi.nlm.nih.gov/pubmed/27330520

	Introduction
	Related Work
	Proposed Solution
	Materials and Methods
	Data Acquisition and Description
	Five-Factor Model
	Xgboost and Shapley Additive EXplanations
	Simulated Annealing
	Overview of the Team Formation Algorithm

	Results
	Data Overview
	Phase Results
	FFM Data
	Repository Commit Data

	Team Performance and FFM Dimensions
	Analysis of Team Satisfaction Metrics
	Binary Classification of Inter-Member Satisfaction
	Team Formation Algorithm Evaluation

	Discussion
	Conclusions
	References

